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Abstract

This paper describes a basic flow-control protocol for the transfer of large messages between hosts using the
InfiniBand verbs library. The protocol breaks messages into segments and then uses the remote direct memory
access (RDMA) write with immediate data operation to transfer these segments. To illustrate, an example is
provided that copies a file between two hosts.

1 Motivation

A commenter at The Geek in the Corner asked about sending large(r) amounts of data:

...I’'m wondering if you would be able to provide some pointers or even examples that send very large
amounts of data, e.g. sending files up to or > 2 GB. Your examples use 1024 byte buffers. I suspect there
is an efficient way of doing this given that there is a 23! limit for the message size.

I should point out that I don’t have lots of memory available as it’s used for other things.

There are many ways to do this. I described send/receive operations and the fundamentals of InfiniBand verbs
in “Building an RDMA-Capable Application with IB Verbs” [2], and the use of RDMA read/write operations in
“RDMA Read and Write with IB Verbs” [3]. For this problem we will combine elements of both approaches and
discuss how to handle flow control in general. I will also briefly discuss the RDMA-write-with-immediate-data
(IBV_WR_RDMA_WRITE_WITH_IMM) operation, and I will illustrate these methods with a sample [1] that transfers,
using RDMA a file specified on the command line.

As in previous papers, our sample consists of a server and a client. The server waits for connections from the client.
The client does essentially two things after connecting to the server: it sends the name of the file it is transferring, and
then sends the contents of the file. We will not concern ourselves with the nuts and bolts of establishing a connection;
that was covered in a previous paper [2]. Instead, we will focus on developing a protocol for synchronization and
flow control.

2 Protocol
There are many ways we could orchestrate the transfer of an entire file from client to server. For instance:

e Load the entire file into client memory, connect to the server, wait for the server to post a set of receives, then
issue a send operation (on the client side) to copy the contents to the server.

e Load the entire file into client memory, register the memory, pass the region details to the server, let it issue
an RDMA read to copy the entire file into its memory, then write the contents to disk.

*Adapted from a blog post at The Geek in the Corner, http://thegeekinthecorner.wordpress.com/.
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As above, but issue an RDMA write to copy the file contents into server memory, then signal it to write to
disk.

Open the file on the client, read one chunk, wait for the server to post a receive, then post a send operation on
the client side, and loop until the entire file is sent.

As above, but use RDMA reads.

As above, but use RDMA writes.

Loading the entire file into memory can be impractical for large files, so we will skip the first three options. Of
the remaining three, I will focus on using RDMA writes so that I can illustrate the use of the RDMA-write-with-
immediate-data operation, something that I have been intending to discuss for some time. This operation is similar
to a regular RDMA write except that the initiator can “attach” a 32-bit value to the write operation. Unlike regular
RDMA writes, RDMA writes with immediate data require that a receive operation be posted on the target’s receive
queue. The 32-bit value will be available when the completion is pulled from the target’s queue.

Now that we decided that we are going to break up the file into chunks, and write the chunks one at a time into the
server’s memory, we must find a way to ensure that we do not write chunks faster than the server can process them.
We will do this by instructing the server to send explicit messages to the client when it is ready to receive data. The
client, on the other hand, will use writes with immediate data to signal the server. The sequence looks something
like this (see Figure 1 for a graphical illustration):

1. Server starts listening for connections.
2. Client posts a receive operation for a flow-control message and initiates a connection to the server.

3. Server posts a receive operation for an RDMA write with immediate data and accepts the connection from the
client.

4. Server sends the client its target memory region details.

5. Client re-posts a receive operation then responds by writing the name of the file to the server’s memory region.
The immediate data field contains the length of the file name.

6. Server opens a file descriptor, re-posts a receive operation, then responds with a message indicating that it is
ready to receive data.

7. Client re-posts a receive operation, reads a chunk from the input file, then writes the chunk to the server’s
memory region. The immediate data field contains the size of the chunk in bytes.

8. Server writes the chunk to disk, re-posts a receive operation, then responds with a message indicating that it
is ready to receive data.

9. Repeat steps 7 and 8 until there are no data left to send.

10. Client re-posts a receive operation, then initiates a zero-byte write to the server’s memory. The immediate
data field is set to zero.

11. Server responds with a message indicating that it is finished.
12. Client closes the connection.

13. Server closes the file descriptor.

This sequence lends itself well to an event-driven implementation—the client acts in response to a message from the
server, and vice versa. Because the client only processes three types of messages from the server, and the server only
processes the immediate data from incoming RDMA writes, our completion processing functions, where we do the
bulk of our work, will be relatively simple.
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Figure 1: Sequence diagram for client-server file transfer



3 Implementation

Our implementation [1] is divided into two pieces: the client, in client.c, which is responsible for initiating a
connection to the server and transferring the user-specified file, and the server, in server. c, which accepts connections
and writes received files. Both the client and the server share some common connection-setup code, which we have
in common.c.

For this example I have inverted the structure from my RDMA read/write example [3]; there I had the connection
management code separated into client.c and server.c with the completion-processing code in common.c whereas
here 1 have centralized the connection management in common.c and divided the completion processing between
client.c and server.c. There are six public connection management functions, declared in common.h:

e rc_init(): Initializes the connection management code and sets the callback functions that will be used by
event handlers.

e rc_client_loop(): Initiates a connection to the specified server address (and port), then waits in a loop,
processing events, until the connection is closed.

e rc_disconnect(): Disconnects the current connection.
e rc_die(): Print a message and abort the program.
e rc_get_pd(): Gets the active InfiniBand protection domain (required to register memory with ibv_reg_mr()).

e rc_server_loop(): Starts listening on the specified port and waits in a loop, processing events.

3.1 Server

We start by examining the server. Here we see the server-side use of the common connection management functions
rc_init() and rc_server_loop():
int main(int argc, char **argv)
{
rc_init(
on_pre_conn,
on_connection,
on_completion,
on_disconnect);

printf ("waiting for connections. interrupt (°C) to exit.\n");
rc_server_loop (DEFAULT_PORT) ;

return O;

}

The callback names are fairly obvious: on_pre_conn() is called when a connection request is received but before it
is accepted, on_connection() is called when a connection is established, on_completion() is called when an entry
is pulled from the completion queue, and on_disconnect () is called upon disconnection.

In on_pre_conn(), we allocate a structure to contain various connection context fields (a buffer to contain data from
the client, a buffer from which to send messages to the client, etc.) and post a receive work request for the client’s
RDMA writes:

static void post_receive(struct rdma_cm_id *id)

{
struct ibv_recv_wr wr, *bad_wr = NULL;
memset (&wr, 0, sizeof (wr));
wr.wr_id = (uintptr_t)id;
wr.sg_list = NULL;

wr.num_sge = 0;

TEST_NZ (ibv_post_recv(id->qp, &wr, &bad_wr));
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What is interesting here is that we are setting sg_list = NULL and num_sge = 0. Incoming RDMA write requests
will specify a target memory address, and because this work request will only match incoming RDMA writes, we
do not need to use sg_list and num_sge to specify a location in memory for the receive. After the connection is
established, on_connection() sends the memory region details to the client:

static void on_connection(struct rdma_cm_id *id)

{
struct conn_context *ctx = (struct conn_context *)id->context;
ctx->msg->id = MSG_MR;
ctx->msg->data.mr.addr = (uintptr_t)ctx—>buffer_mr—>addr;
ctx->msg->data.mr.rkey = ctx->buffer_mr->rkey;
send_message (id);

}

This prompts the client to begin issuing RDMA writes, which trigger the on_completion() callback:

static void on_completion(struct ibv_wc *wc)

{
struct rdma_cm_id *id = (struct rdma_cm_id *) (uintptr_t)wc->wr_id;
struct conn_context *ctx = (struct conn_context *)id->context;

if (wc->opcode == IBV_WC_RECV_RDMA_WITH_IMM) {
uint32_t size = ntohl(wc->imm_data);

if (size == 0) {
ctx->msg->id = MSG_DONE;
send_message (id);

// don’t mneed post_receive() since we’re dome with this connection

} else if (ctx->file_name [0]) {
ssize_t ret;

printf ("received %i bytes.\n", size);
ret = write(ctx->fd, ctx->buffer, size);

if (ret != size)
rc_die("write () failed");

post_receive (id);

ctx->msg->id = MSG_READY;
send_message (id) ;

} else {
memcpy (ctx->file_name, ctx->buffer, (size > MAX_FILE_NAME) ? MAX_FILE_NAME : size);
ctx->file_name[size - 1] = ’\0’;

printf ("opening file %s\n", ctx->file_name);

ctx->fd = open(ctx->file_name, O_WRONLY | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR | S_IRGRP |
S_IROTH);

if (ctx->fd == -1)
rc_die("open() failed");

post_receive (id);

ctx->msg->id = MSG_READY;
send_message (id) ;

We retrieve the immediate data field in line 7 and convert it from network byte order to host byte order. We then
test three possible conditions:

1. If size == 0, the client has finished writing data (lines 9-14). We acknowledge this with MSG_DONE.



2. If the first byte of ctx->file_name is set, we already have the file name and have an open file descriptor (lines
15-29). We call write() to append the client’s data to our open file then reply with MSG_READY, indicating
that we are ready to accept more data.

3. Otherwise, we have yet to receive the file name (lines 30-45). We copy it from the incoming buffer, open a file
descriptor, then reply with MSG_READY to indicate that we are ready to receive data.

Upon disconnection, in on_disconnect (), we close the open file descriptor and tidy up memory registrations.

3.2 Client

On the client side, main() is a little more complex in that we must pass the server host name and port into
rc_client_loop():

int main(int argc, char *xargv)

{

struct client_context ctx;

if (argc !'= 3) {
fprintf (stderr, "usage: %s <server-address> <file-name>\n", argv[0]);
return 1;

}

ctx.file_name = basename (argv[2]);

ctx.fd = open(argv[2], O_RDONLY);

if (ctx.fd == -1) {
fprintf (stderr, "unable to open input file \"%s\"\n", ctx.file_name);
return 1;

}

rc_init(
on_pre_conn,
NULL, // on connect
on_completion,
NULL); // on disconnect

rc_client_loop(argv[1], DEFAULT_PORT, &ctx);
close(ctx.fd);

return O;

We do not provide on-connection or on-disconnection callbacks because these events are not especially relevant to
the client. The on_pre_conn() callback is similar to the server’s, except that the connection context structure is
pre-allocated, and the receive work request we post (in post_receive()) requires a memory region:

static void post_receive(struct rdma_cm_id *id)

{

struct client_context *ctx = (struct client_context *)id->context;

struct ibv_recv_wr wr, *bad_wr = NULL;
struct ibv_sge sge;

memset (&wr, 0, sizeof (wr));

wr.wr_id = (uintptr_t)id;
wr.sg_list = &sge;
wr.num_sge = 1;

sge.addr = (uintptr_t)ctx->msg;
sge.length = sizeof (¥xctx->msg);
sge.lkey = ctx->msg_mr->lkey;

TEST_NZ (ibv_post_recv(id->qp, &wr, &bad_wr));



We point sg_list to a buffer large enough to hold a struct message. The server will use this to pass along flow-
control messages. Each message will trigger a call to on_completion(), which is where the client does the bulk of
its work:

static void on_completion(struct ibv_wc *wc)

{
struct rdma_cm_id *id = (struct rdma_cm_id *) (uintptr_t) (wc->wr_id);
struct client_context *ctx = (struct client_context *)id->context;

if (wc->opcode & IBV_WC_RECV) {

if (ctx->msg->id == MSG_MR) {
ctx->peer_addr = ctx->msg->data.mr.addr;
ctx->peer_rkey ctx->msg->data.mr.rkey;

printf("received MR, sending file namel\n");
send_file_name (id);

} else if (ctx->msg->id == MSG_READY) {
printf ("received READY, sending chunk\n");
send_next_chunk (id);

} else if (ctx->msg->id == MSG_DONE) {
printf ("received DONE, disconnecting\n");
rc_disconnect (id);
return;

}

post_receive (id);

This matches the sequence described above. Both send_file_name() and send_next_chunk() ultimately call
write_remote():

static void write_remote(struct rdma_cm_id *id, uint32_t len)

{
struct client_context *ctx = (struct client_context *)id->context;
struct ibv_send_wr wr, *bad_wr = NULL;
struct ibv_sge sge;
memset (&wr, 0, sizeof (wr));
wr.wr_id = (uintptr_t)id;
wr.opcode = IBV_WR_RDMA_WRITE_WITH_IMM;
wr.send_flags = IBV_SEND_SIGNALED;
wr.imm_data = htonl(len);
wr.wr.rdma.remote_addr = ctx->peer_addr;
wr.wr.rdma.rkey = ctx->peer_rkey;
if (len) {
wr.sg_list = &sge;
wr.num_sge = 1;
sge.addr = (uintptr_t)ctx->buffer;
sge.length = len;
sge.lkey = ctx->buffer_mr->lkey;
}
TEST_NZ (ibv_post_send(id->qp, &wr, &bad_wr));
}

This RDMA request differs from those used in earlier papers in two ways: we set opcode to IBV_WR_RDMA_WRITE_WITH_IMM,
and we set imm_data to the length of our buffer.



4 Caveats

4.1 iWARP

Ethernet (iWARP) adapters do not support IBV_WR_RDMA_WRITE_WITH_IMM. The protocol we developed in this
paper will therefore only work with InfiniBand host channel adapters. Building a protocol that works with iWARP
would require only minor modifications—instead of IBV_WR_RDMA_WRITE_WITH_IMM, the client would first post an
IBV_WR_RDMA_WRITE request, and follow that by posting an IBV_WR_SEND to send the size of the buffer. The server
would be modified such that the receive operation points to a registered buffer that would contain the size of the
buffer sent by the client. This modification is left as an exercise for the reader.

4.2 Performance
The protocol we developed is simple and easy to explain, but far from the fastest way to transfer large amounts
of data using InfiniBand verbs. A faster protocol would, at a minimum, overlap disk reads with RDMA writes.

This would require that the server make several buffers available and that the client write to them in a round-robin
fashion. A faster, multi-buffer protocol will be described in a future paper.

5 Conclusion

If the code compiles and runs as expected, we should see the following;:

ib-host-1$ ./server ib-host-2$ dd if=/dev/urandom of=test-file
waiting for connections. bs=1048576 count=25

interrupt (°C) to exit. 25+0 records in
opening file test-file 25+0 records out
received 10485760 bytes. 26214400 bytes (26 MB) copied, 3.11979
received 10485760 bytes. seconds, 8.4 MB/s
received 5242880 bytes.
finished transferring test-file ib-host-2$ md5sum test-file
~C 5815ed31a65c5da9745764c887£5£777 test-file
ib-host-1$ md5sum test-file ib-host-2$ ./client ib-host-1 test-file
5815ed31a65c5da9745764c887£5£777 test-file received MR, sending file name

received READY, sending chunk
received READY, sending chunk
received READY, sending chunk
received READY, sending chunk
received DONE, disconnecting

If instead we see an error during memory registration, such as the following, we may need to increase the locked
memory resource limit:

error: ctx->buffer_mr = ibv_reg_mr(rc_get_pd(), ctx->buffer, BUFFER_SIZE,
IBV_ACCESS_LOCAL_WRITE) failed (returned zero/null).

The OpenMPI FAQ [4] explains how to do this.
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