Weather Research and Forecasting (WRF) Model Performance Research and Profiling

October 2008
Note

- The following research was performed under the HPC Advisory Council activities
 - AMD, Dell, Mellanox
 - HPC Advisory Council Cluster Center
- The participating members would like to thank John Michalakes for his support and guidelines
- For more info please refer to
The WRF Model

• The Weather Research and Forecasting (WRF) Model
 – Numerical weather prediction system
 – Designed for operational forecasting and atmospheric research

• WRF developed by
 – National Center for Atmospheric Research (NCAR),
 – The National Centers for Environmental Prediction (NCEP)
 – Forecast Systems Laboratory (FSL)
 – Air Force Weather Agency (AFWA)
 – Naval Research Laboratory
 – Oklahoma University
 – Federal Aviation Administration (FAA)
The WRF Usage

• An application for weather forecasting and research
• The latest numerical program model to be adopted by
 – The National Weather Service
 – The U.S. military and private meteorological services
 – Meteorological services worldwide
• The Hurricane Weather Research and Forecasting (HWRF) model is a specialized version of WRF
 – Became operational in 2007
• WRF is a mesoscale model
 – Uses a grid spacing between 4 and 12.5 kilometers
 – Vertical grid spacing between 25 and 37 divisions
• WRF Real-time Forecasting
The WRF Usage

- **The WRF model includes**
 - Real-data and idealized simulations
 - Various lateral boundary condition options
 - Full physics options
 - Non-hydrostatic and hydrostatic
 - One-way, two-way nesting and moving nest
 - Applications ranging from meters to thousands of kilometers
Objectives

• The presented research was done to provide
 – WRF Model performance benchmarking
 – Interconnect comparisons and how they impact WRF performance
 – Ways to increase WRF productivity
 – WRF networking profiling and determination of sensitivity points
 – MPI libraries comparisons
Test Cluster Configuration

- Dell PowerEdge SC 1435 24-node cluster
- Quad-Core AMD Opteron™ 2358 SE CPUs
- Mellanox® InfiniBand ConnectX® DDR HCAs
- Memory: 16GB memory, DDR2 677MHz per node
- OS: RH 5.1, OFED 1.3 InfiniBand SW stack
- MPI: Open MPI 1.3, MVAPICH 1.1, HP MPI 2.2.7
- Application: WRF V3, 12km CONUS benchmark case
- Compiler: Gfortran v4.2
 - Flags: FCOPTIM= -O3 -ffast-math -ftree-vectorize -ftree-loop-linear -funroll-loops
Mellanox InfiniBand Interconnect Technology

- **Industry Standard**
 - Hardware, software, cabling, management
 - Design for clustering and storage interconnect

- **Price and Performance**
 - 40Gb/s node-to-node
 - 120Gb/s switch-to-switch
 - 1us application latency
 - Most aggressive roadmap in the industry

- **Reliable with congestion management**

- **Efficient**
 - RDMA and Transport Offload
 - Kernel bypass
 - CPU focuses on application processing

- **Scalable for Petascale computing & beyond**

- **End-to-end quality of service**

- **Virtualization acceleration**

- **I/O consolidation Including storage**

The InfiniBand Performance Gap is Increasing

InfiniBand Delivers the Lowest Latency
Quad-Core AMD Opteron™ Processor

• **Performance**
 – Quad-Core
 • Enhanced CPU IPC
 • 4x 512K L2 cache
 • 2MB L3 Cache
 – Direct Connect Architecture
 • HyperTransport™ Technology 1.0
 • Up to 8 GB/s
 – Floating Point
 • 128-bit FPU per core
 • 4 FLOPS/clk peak per core
 – Memory
 • 1GB Page Support
 • DDR-2 667 MHz

• **Scalability**
 – 48-bit Physical Addressing

• **Compatibility**
 – Same power/thermal envelopes as Second-Generation AMD Opteron™ processor
Simplify IT - Deployment and Management

- **Dell HPC Solutions**
 - High Performance, Scalable Architectures
 - Professional Deployment and Support Services
 - Maximum Efficiency, Cost, Power, Performance & Productivity

- **System Sizing Guidelines**
 - Building Block Foundations
 - Integrated and Validated Architectures

- **Workload Modeling**
 - Optimized System Size, Configuration and Workloads
 - Test-bed Benchmarks
 - ISV Applications Characterization
 - Best Practices & Usage Analysis
Comparison between clustering interconnects - InfiniBand and GigE

- **InfiniBand** high speed interconnect enables almost linear scaling
 - Maximized system performance and enable faster simulations
- **Gigabit Ethernet** limits WRF performance and slow down simulations

![WRF Benchmark Results - Conus 12Km](image)
InfiniBand increases WRF performance by up to 115%
For cluster size of 24 nodes, higher numbers expected with larger cluster size
WRF Performance Results - Productivity

• Utilizing CPU affinity for higher productivity

• Two cases
 – Single job over the entire systems
 – Two jobs, each utilized single CPU in every server (CPU affinity)

• CPU affinity enables up to 20% more jobs per day

Increasing WRF Productivity via CPU Affinity

![Graph showing the increase in jobs per day with more servers for 1 Parallel Job and 2 Parallel Jobs.]
WRF Profiling Summary - Interconnect

- WRF model was profiled to determine dependency networking capabilities
- Majority of data transferred between compute nodes
 - Done with 16KB-1MB message size
 - Data transferred increases with cluster size in those message sizes
- Most used message sizes
 - <64B messages – mainly synchronizations
 - 16KB-64KB – mainly compute related
- Message size distribution
 - With cluster size, there is increase in both small and larger messages
 - From the total number of messages
 - The percentage of large messages increases on behalf of small messages
- WRF shows dependency on both clustering latency and throughput
 - Latency – synchronizations
 - Throughput (interconnect bandwidth) – compute
WRF Profiling – Data Transferred

WRF MPI Profiling
Total Data Send per Message Size per Cluster Size

Message Size

Total Size (MByte)

[0..64] [65..256] [257..1024] [1k..4k] [4k..16k] [16k..64k] [64k..256k] [256k..1MB]

4nodes 8nodes 12nodes 16nodes
WRF Profiling – Message Sizes

WRF MPI Profiling
Total Number of Messages per Cluster Size

Number of Messages (Millions)

Message Size

[0..64] [65..256] [257..1024] [1k..4k] [4k..16k] [16k..64k] [64k..256k] [256k..1MB]

4nodes 8nodes 12nodes 16nodes
WRF Profiling Summary – MPI Library

- **WRF model shows dependency on latency**
 - Mainly for <64B messages

- **WRF model shows dependency on throughput**
 - Mainly for 16KB-64KB messages

- **MPI comparison**
 - MPI libraries tested – Open MPI, MVAPICH, HP-MPI
 - All show same latency up to 128B
 - Beyond that MVAPICH and Open MPI show better latency
 - MVAPICH and Open MPI show higher bi-directional throughput

- **WRF mode results**
 - MVAPICH and Open MPI show similar performance results
 - HP-MPI shows average of 10% lower performance results
 - Due to lower bandwidth and higher latency
MPI Low Level Performance Comparison

MPI Bi-Dir Bandwidth

MPI Uni-Dir Bandwidth

MPI Latency
WRF Benchmark Results - Conus 12Km

Performance (GFlop/s)

Number of Servers

OpenMPI

HP-MPI
Conclusions and Future Work

• **WRF is the next generation model for weather forecasting**
 – Critical tool for severe storms prediction and alerts
 – Operational since 2006, one of the most used models nowadays

• **Efficient WRF Model usage requires HPC systems**
 – Real-time, accurate and large scale weather analysis

• **WRF Model profiling analysis proves the needs for**
 – High throughput and low latency interconnect solution
 – NUMA aware application for fast access to memory
 – Expert integration and the right choice of MPI library

• **Future work**
 – Power-aware simulations, large memory pages effect
 – Optimized MPI collective operations and collectives offload
Thank You

HPC Advisory Council

HPC@mellanox.com