Abaqus 6.10
Performance Benchmark and Profiling

August 2011
• The following research was performed under the HPC Advisory Council activities
 – Participating vendors: Intel, Dell, Mellanox
 – Compute resource - HPC Advisory Council Cluster Center

• The following was done to provide best practices
 – Abaqus performance overview
 – Understanding Abaqus communication patterns
 – Ways to increase Abaqus productivity
 – MPI libraries comparisons

• For more info please refer to
 – http://www.dell.com
 – http://www.intel.com
 – http://www.mellanox.com
 – http://www.simulia.com
Abaqus by SIMULIA

• Abaqus Unified FEA product suite offers powerful and complete solutions for both routine and sophisticated engineering problems covering a vast spectrum of industrial applications

• The Abaqus analysis products listed below focus on:
 – Nonlinear finite element analysis (FEA)
 – Advanced linear and dynamics application problems

• Abaqus/Standard
 – General-purpose FEA that includes broad range of analysis capabilities

• Abaqus/Explicit
 – Nonlinear, transient, dynamic analysis of solids and structures using explicit time integration
Test Cluster Configuration

- **Dell™ PowerEdge™ M610 38-node (456-core) cluster**
 - Six-Core Intel X5670 @ 2.93 GHz CPUs
 - Memory: 24GB memory, DDR3 1333 MHz
 - OS: RHEL 5.5, OFED 1.5.2 InfiniBand SW stack

- **Intel Cluster Ready certified cluster**

- **Mellanox ConnectX-2 InfiniBand adapters and non-blocking switches**

- **MPI: HP-MPI 2.3**

- **Application: Abaqus 6.10-3**

- **Benchmark datasets:**
 - Abaqus/Standard benchmarks: S2A – Flywheel with centrifugal load
 - Abaqus/Standard benchmarks: S4B – Cylinder head bolt-up
 - Abaqus/Explicit benchmarks: E2 – Cell phone drop
 - Abaqus/Explicit benchmarks: E5 – Blast loaded plate
About Intel® Cluster Ready

- Intel® Cluster Ready systems make it practical to use a cluster to increase your simulation and modeling productivity
 - Simplifies selection, deployment, and operation of a cluster

- A single architecture platform supported by many OEMs, ISVs, cluster provisioning vendors, and interconnect providers
 - Focus on your work productivity, spend less management time on the cluster

- Select Intel Cluster Ready
 - Where the cluster is delivered ready to run
 - Hardware and software are integrated and configured together
 - Applications are registered, validating execution on the Intel Cluster Ready architecture
 - Includes Intel® Cluster Checker tool, to verify functionality and periodically check cluster health
About Dell PowerEdge Servers

- **System Structure and Sizing Guidelines**
 - 38-node cluster build with Dell PowerEdge™ M610 blade servers
 - Servers optimized for High Performance Computing environments
 - Building Block Foundations for best price/performance and performance/watt

- **Dell HPC Solutions**
 - Scalable Architectures for High Performance and Productivity
 - Dell's comprehensive HPC services help manage the lifecycle requirements.
 - Integrated, Tested and Validated Architectures

- **Workload Modeling**
 - Optimized System Size, Configuration and Workloads
 - Test-bed Benchmarks
 - ISV Applications Characterization
 - Best Practices & Usage Analysis
Abaqus/Standard – Performance

- **Benchmark: dataset: S2A – Flywheel with centrifugal load**
 - Affects largely by MPI communications and network interconnect
 - 1GigE would not allow it to scale beyond 2 nodes

- **Benchmark dataset: S4B – Cylinder head bolt-up**
 - Not as network sensitive; more computationally-intensive problem

- **InfiniBand enables higher scalability and system utilization**
 - Reducing the runtime by 194% compared to 1GigE using the S2A benchmark
 - Enabling faster job turnaround time by up to 102% versus 1GigE using the S4B dataset

Abaqus/Standard Performance (S2A)

- Number of MPI Calls

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Wallclock Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250 1GigE, 130 InfiniBand</td>
</tr>
<tr>
<td>2</td>
<td>275 1GigE, 145 InfiniBand</td>
</tr>
<tr>
<td>4</td>
<td>290 1GigE, 150 InfiniBand</td>
</tr>
<tr>
<td>8</td>
<td>300 1GigE, 160 InfiniBand</td>
</tr>
</tbody>
</table>

194% reduction in wallclock time when using InfiniBand QDR compared to 1GigE.

Abaqus/Standard Performance (S4B)

- Number of MPI Calls

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Wallclock Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000 1GigE, 1900 InfiniBand</td>
</tr>
<tr>
<td>2</td>
<td>2000 1GigE, 1900 InfiniBand</td>
</tr>
<tr>
<td>4</td>
<td>2000 1GigE, 1900 InfiniBand</td>
</tr>
<tr>
<td>8</td>
<td>2000 1GigE, 1900 InfiniBand</td>
</tr>
</tbody>
</table>

102% reduction in wallclock time when using InfiniBand QDR compared to 1GigE.

Lower is better
Abaqus/Explicit – Performance

- **Benchmark dataset: E2 – Cell phone drop**
 - 1GigE would not allow work done beyond 4 nodes
- **Benchmark dataset: E6 – Concentric spheres**
 - Less affected by network latency; more computationally sensitive dataset
- **InfiniBand enables higher cluster productivity**
 - Reducing the runtime by 133% for the E2 dataset
 - Up to 102% higher performance versus 1GigE using the E6 dataset

Abaqus/Explicit Performance

- **E2**
 - Number of MPI Calls
 - Lower is better

Abaqus/Explicit Performance

- **E6**
 - Number of MPI Calls
 - InfiniBand QDR

- 133% for E2 dataset
- Up to 102% higher performance for E6 dataset compared to 1GigE
Abaqus Profiling – MPI/User Time Ratio

- **MPI communication percentage increases as the cluster scales**
 - The E2 benchmark dataset has the communication percentage increase at a faster pace
 - The communication ratio for S4B stays flat as more nodes are running the simulation
 - Performance data shows E2 is being affected largely by network, more so than S4B

Abaqus/Standard Profiling (S4B)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>MPI/User Time Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Abaqus/Explicit Profiling (E2)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>MPI/User Time Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

InfiniBand QDR
• Abaqus uses a wide range of MPI APIs
• MPI_Test dominates the MPI function calls for the Abaqus/Standard
 – Over 96% of the MPI function calls are for MPI_Test on 8-node S4B simulation
• Abaqus/Explicit uses a range of MPI calls for solving the E2 dataset
 – MPI_Iprobe (44%) for a 8-node job
 – MPI_Test (16%)
 – MPI_Isend (15%)
 – MPI_Irecv (8%)
Abaqus Profiling – Time Spent by MPI Calls

- **Abaqus/Standard**: Majority of the MPI time is spent on MPI_Test
 - `MPI_Test`(33%), `MPI_Recv`(22%), `MPI_Bcast`(16%)
- **Abaqus/Explicit**: Majority of the MPI time is spent on MPI_Iprobe
 - `MPI_Iprobe`(43%), `MPI_Allgatherv`(20%), `MPI_Allgather`(8%)
Abaqus Profiling – MPI Message Sizes

- **Abaqus/Standard uses small and medium MPI message sizes**
 - Most message sizes are between 0B to 64B, and 65B to 256B
 - Some medium size concentration in 64KB to 256KB
- **Abaqus/Explicit has the highest concentration in small message sizes**
 - Highest around 65B to 256B
• Abaqus/Standard uses hybrid of MPI and threading for computation
• It shows substantial data transfers between the MPI processes
 – Growing data communications from around 10GB per process in a 2-node simulation, to 15-20GB for a 8-node simulation

Abaqus/Standard Profiling – MPI Data Transfer

![Data Transferred by Ranks for 2-node simulation](chart1.png)

![Data Transferred by Ranks for 4-node simulation](chart2.png)

![Data Transferred by Ranks for 8-node simulation](chart3.png)

![Data Transferred by Ranks for 16-node simulation](chart4.png)
Abaqus/Explicit Profiling – MPI Data Transfer

- Abaqus/Explicit uses pure MPI for job partitioning and execution
- Abaqus/Explicit spreads out data transfers as more MPI processes in the job
 - From 8-18GB per process on a single node, down to 4-10GB per process in 8-node job
Abaqus Profiling – Aggregated Transfer

- **Aggregated data transfer refers to:**
 - Total amount of data being transferred in the network between all MPI ranks collectively
- **Substantially larger data transfer takes place in Abaqus/Explicit**
 - 12 process per node in Abaqus/Explicit would take part in MPI communication
 - Only 1 process per node in the MPI hybrid of Abaqus/Standard, which reduces communications needed to take place

![Abaqus/Standard Profiling (S4B) Aggregated Data Transferred](chart1)

![Abaqus/Explicit Profiling (E2) Aggregated Data Transferred](chart2)
Abaqus – Summary

• **InfiniBand allows Abaqus to run at the most efficient rate**
 – InfiniBand enables Abaqus to achieve fastest runtime and highest cluster scalability
 – Ethernet would not allow scale, ended up wasting valuable system resources

• **Abaqus/Standard**
 – Uses hybrid of MPI and threading
 – Threading for computation
 – Only 1 process per node is responsible for communications
 – MPI_Test is the most dominant MPI function call

• **Abaqus/Explicit**
 – Uses pure MPI for job partitioning and execution
 – Significantly more communications is taken place compared to Abaqus/Standard
 – MPI_Iprobe is the most used MPI function
Thank You
HPC Advisory Council