BSMBench
Performance Benchmark and Profiling

January 2017
The following research was performed under the HPC Advisory Council activities
- Compute resource - HPC Advisory Council Cluster Center

The following was done to provide best practices
- BSMBench performance overview
- Understanding BSMBench communication patterns
- Ways to increase BSMBench productivity

For more info please refer to
- http://www.bsmbench.org/
- https://gitlab.com/edbennett/BSMBench
BSMBench

- Open source supercomputer benchmarking tool
- Based on simulation code used for studying strong interactions in particle physics
- Includes the ability to tune the ratio of communication over computation
- Includes 3 examples that show the performance of the system for
 - Problem that is computationally dominated (marked as Communications)
 - Problem that is communication dominated (marked as Compute)
 - Problem in which communication and computational requirements are balanced (marked as Balance)

- Used to simulate workload such as Lattice Quantum ChromoDynamics (QCD), and by extension its parent field, Lattice Gauge Theory (LGT), which make up a significant fraction of supercomputing cycles worldwide
- For reference: technical paper published at the 2016 International Conference on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, 2016, pp. 834-839
Objectives

- The presented research was done to provide best practices
 - BSMBench performance benchmarking
 - MPI Library performance comparison
 - Interconnect performance comparison
 - Compilers comparison
 - Optimization tuning
- The presented results will demonstrate
 - The scalability of the compute environment/application
 - Considerations for higher productivity and efficiency
Test Cluster Configuration

- **Dell PowerEdge R730 32-node (1024-core) “Thor” cluster**
 - Dual-Socket 16-Core Intel E5-2697Av4 @ 2.60 GHz CPUs (BIOS: Maximum Performance, Home Snoop)
 - Memory: 256GB memory, DDR4 2400 MHz, Memory Snoop Mode in BIOS sets to Home Snoop
 - OS: RHEL 7.2, M MLNX_OFED_LINUX-3.4-1.0.0.0 InfiniBand SW stack

- **Mellanox ConnectX-4 EDR 100Gb/s InfiniBand Adapters**

- **Mellanox Switch-IB SB7800 36-port EDR 100Gb/s InfiniBand Switch**

- **Intel® Omni-Path Host Fabric Interface (HFI) 100Gbps Adapter**

- **Intel® Omni-Path Edge Switch 100 Series**

- **Dell InfiniBand-Based Lustre Storage based on Dell PowerVault MD3460 and Dell PowerVault MD3420**

- **Compilers: Intel Compilers 2016.4.258**

- **MPI: Intel Parallel Studio XE 2016 Update 4, Mellanox HPC-X MPI Toolkit v1.8**

- **Application: BSMBench Version 1.0**

- **MPI Profiler: IPM (from Mellanox HPC-X)**
BSMBench Profiling – % of MPI Calls

- **Major MPI calls (as % of wall time):**
 - Balance: MPI_BARRIER (26%), MPI_ALLREDUCE (6%), MPI_WAITALL (5%), MPI_ISSEND (4%)
 - Communications: MPI_BARRIER (14%), MPI_ALLREDUCE (5%), MPI_WAITALL (5%), MPI_ISSEND (2%)
 - Compute: MPI_BARRIER (14%), MPI_ALLREDUCE (5%), MPI_WAITALL (5%), MPI_ISSEND (1%)

32 Nodes / 1024 Processes
BSMBench Profiling – MPI Message Size Distribution

- Similar communication pattern seen across all 3 examples:
 - Balance: MPI_Barrier: 0-byte, 22% wall, MPI_Allreduce: 8-byte, 5% wall
 - Communications: MPI_Barrier: 0-byte, 26% wall, MPI_Allreduce: 8-byte, 5% wall
 - Compute: MPI_Barrier: 0-byte, 13% wall, MPI_Allreduce: 8-byte, 5% wall

32 Nodes / 1024 Processes
BSMBench Profiling – Time Spent in MPI

- The different communications across the MPI processes is mostly balance
 - Does not appear to be any significant load imbalances in the communication layer
BSMBench Performance – Interconnects

- **EDR InfiniBand delivers better scalability for BSMBench**
 - Similar performance between EDR InfiniBand and Omni-Path up to 8 nodes
 - Close to 20% performance advantage for InfiniBand at 32 nodes
 - Similar performance difference across the three different examples

Higher is better
BSMBench Performance – MPI Libraries

• Comparison between two commercial available MPI libraries
• Intel MPI and HPC-X delivers similar performance
 – HPC-X demonstrates 5% advantage at 32 nodes
BSMBench Summary

- **Benchmark for BSM Lattice Physics**
 - Utilizes both compute and network communications
- **Fast network communication is important for scalability**
- **Interconnect comparison**
 - EDR InfiniBand demonstrates higher scalability beyond 16 nodes as compared to Omni-Path
 - EDR InfiniBand delivers nearly 20% higher performance 32 nodes / 1024 cores
 - Similar performance advantage across all three example cases
- **MPI Profiling**
 - Most MPI time is spent on MPI collective operations and non-blocking communications
 - Heavy use of MPI collective operations (MPI_Allreduce, MPI_Barrier)
 - Similar communication patterns seen across all three examples
 - Balance: MPI_Barrier: 0-byte, 22% wall, MPI_Allreduce: 8-byte, 5% wall
 - Comms: MPI_Barrier: 0-byte, 26% wall, MPI_Allreduce: 8-byte, 5% wall
 - Compute: MPI_Barrier: 0-byte, 13% wall, MPI_Allreduce: 8-byte, 5% wall