CP2K
Performance Benchmark and Profiling

August 2012
• The following research was performed under the HPC Advisory Council activities
 – Participating vendors: Intel, Dell, Mellanox
 – Compute resource - HPC Advisory Council Cluster Center

• The following was done to provide best practices
 – CP2K performance overview
 – Understanding CP2K communication patterns
 – Ways to increase CP2K productivity
 – MPI libraries comparisons

• For more info please refer to
 – http://www.dell.com
 – http://www.intel.com
 – http://www.mellanox.com
 – http://cp2k.berlios.de
Objectives

• The following was done to provide best practices
 – CP2K performance benchmarking
 – Interconnect performance comparisons
 – MPI performance comparison
 – Understanding CP2K communication patterns

• The presented results will demonstrate
 – The scalability of the compute environment to provide nearly linear application scalability
 – The capability of CP2K to achieve scalable productivity
• **CP2K is used to perform atomistic and molecular simulations:**
 – solid state, liquid, molecular and biological systems

• **CP2k provides a general framework for different methods, such as:**
 – density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW)
 – classical pair and many-body potentials.

• **CP2K is a freely available (GPL) program, written in Fortran 95**
Test Cluster Configuration

- **Dell™ PowerEdge™ R720xd 16-node (256-core) “Jupiter” cluster**
 - Dual-Socket Eight-Core Intel E5-2680 @ 2.70 GHz CPUs (Static max Perf in BIOS)
 - Memory: 64GB memory, DDR3 1600 MHz
 - OS: RHEL 6.2, OFED 1.5.3 InfiniBand SW stack
 - Hard Drives: 24x 250GB 7.2 RPM SATA 2.5” on RAID 0
- **Intel Cluster Ready certified cluster**
- **Mellanox ConnectX-3 FDR InfiniBand VPI adapters**
- **Mellanox SwitchX SX6036 InfiniBand switch**
- **MPI: Intel MPI 4 Update 3, Open MPI 1.5.5**
- **Compilers and libraries: Intel Composer XE 2011 SP1, Intel MKL 10.3**
- **Application: CP2K version 2.3 (Development Version)**
- **Benchmarks dataset: H2O-128.inp**
About Intel® Cluster Ready

• Intel® Cluster Ready systems make it practical to use a cluster to increase your simulation and modeling productivity
 – Simplifies selection, deployment, and operation of a cluster

• A single architecture platform supported by many OEMs, ISVs, cluster provisioning vendors, and interconnect providers
 – Focus on your work productivity, spend less management time on the cluster

• Select Intel Cluster Ready
 – Where the cluster is delivered ready to run
 – Hardware and software are integrated and configured together
 – Applications are registered, validating execution on the Intel Cluster Ready architecture
 – Includes Intel® Cluster Checker tool, to verify functionality and periodically check cluster health
PowerEdge R720xd
Massive flexibility for data intensive operations

• Performance and efficiency
 – Intelligent hardware-driven systems management with extensive power management features
 – Innovative tools including automation for parts replacement and lifecycle manageability
 – Broad choice of networking technologies from GigE to IB
 – Built in redundancy with hot plug and swappable PSU, HDDs and fans

• Benefits
 – Designed for performance workloads
 • from big data analytics, distributed storage or distributed computing where local storage is key to classic HPC and large scale hosting environments
 • High performance scale-out compute and low cost dense storage in one package

• Hardware Capabilities
 – Flexible compute platform with dense storage capacity
 • 2S/2U server, 6 PCIe slots
 – Large memory footprint (Up to 768GB / 24 DIMMs)
 – High I/O performance and optional storage configurations
 • HDD options: 12 x 3.5” - or - 24 x 2.5 + 2x 2.5 HDDs in rear of server
 • Up to 26 HDDs with 2 hot plug drives in rear of server for boot or scratch
CP2K Performance – Processors

- Intel E5-2680 (Sandy Bridge) cluster outperforms prior generations
 - Performs 110% better than X5670 cluster at 16 nodes
- System components used:
 - Jupiter: 2-socket Intel E5-2680 @ 2.7GHz, 1600MHz DIMMs, FDR IB, 24 disks
 - Janus: 2-socket Intel X5670 @ 2.93GHz, 1333MHz DIMMs, QDR IB, 1 disk

CP2K Benchmark
(H2O-128, Intel MPI)

Higher is better

InfiniBand FDR

![CP2K Benchmark Chart]

110%
Intel MPI outperforms Open MPI at larger scale
- Up to 41% higher performance than Open MPI at 16-node

CPU binding optimization flag used in all cases shown
- No other optimization flags are used

Higher is better
CP2K Performance – Ethernet Interconnect

- **InfiniBand FDR provides better scalability performance than Ethernet**
 - 143% better performance than 10GbE at 16 nodes
 - 101% better performance than 40GbE at 16 nodes
 - 57% better performance than 10GbE-RoCE at 16 nodes
 - 31% better performance than 40GbE-RoCE at 16 nodes
 - 1GbE does not scale at all

CP2K Benchmark

(H2O-128, Intel MPI)

![Bar chart showing performance comparison between different network speeds (1GbE, 10GbE, 10GbE-RoCE, 40GbE, 40GbE-RoCE, InfiniBand FDR) across different number of nodes (2, 4, 8, 16). The chart indicates higher is better performance.*

Higher is better

16 Processes/Node
• **InfiniBand FDR delivers better application performance**

 - Up to 18% better performance than InfiniBand QDR
 - Using Mellanox ConnectX-3 PCIe Gen3 in FDR mode and QDR mode

CP2K Benchmark

(H2O-128, Intel MPI)

![Graph showing CP2K benchmark results with InfiniBand QDR and FDR modes. The graph indicates 18% better performance with FDR at 16 processes per node.](image)

Higher is better
CP2K Profiling – MPI/User Time Ratio

- MPI communication time stays flat while compute time halves
 - Reflects that more time spent on computation than communications
 - Spreading workload to InfiniBand-connected nodes without introducing extra overhead
CP2K Profiling – Number of MPI Calls

- **CP2K utilizes a wide range of MPI APIs**
 - 21 MPI APIs used in total
- **MPI_Waitall, MPI_Irecv and MPI_Isend are almost used exclusively**
 - MPI_Alltoallv (39%), MPI_Irecv and MPI_Isend (26% each) at 16 nodes
CP2K Profiling – % Time Spent of MPI Calls

• The most time MPI calls is MPI_Alltoallv
 – MPI_Alltoallv(34%), MPI_Waitall(17%), MPI_Reduce(12%), MPI_Alltoall(10%)
• Time consumed by calls are generally balanced
 – E.g. MPI_Alltoall, MPI_Waitall and MPI_waitany

16 Processes/Node

16 Nodes
As the cluster grows, less data transfers between MPI processes
- Decrease from 11GB max (8 nodes) at to 6GB max per rank (16 nodes)
- Majority of communications are between neighboring ranks
Majority of MPI messages are small to midrange messages
- In the range of 0B to 256B, and 16KB to 256KB
CP2K – Summary

• **Performance**
 – Intel Xeon E5-2600 series and InfiniBand FDR enable CP2K to scale with 16 nodes
 – The E5-2680 cluster outperforms X5670 cluster by 110% at 16 nodes
 – InfiniBand FDR provides better scalability performance than Ethernet
 • 143% better performance than 10GbE at 16 nodes
 • 101% better performance than 40GbE at 16 nodes
 • 57% better performance than 10GbE-RoCE at 16 nodes
 • 31% better performance than 40GbE-RoCE at 16 nodes
 • 1GbE does not scale beyond 2 nodes
 – InfiniBand FDR provides up to 18% of performance gain over InfiniBand QDR at 16-node
 – Intel MPI scales better than Open MPI at large node counts (16 nodes) by 41%

• **Profiling**
 – The most time MPI calls is MPI_Alltoallv
 – Majority of MPI messages are small to midrange messages
Thank You
HPC Advisory Council