The following research was performed under the HPC Advisory Council activities

- Participating vendors: Intel, Dell, Mellanox
- Compute resource - HPC Advisory Council Cluster Center

For more info please refer to

- http://www.dell.com
- http://www.intel.com
- http://www.mellanox.com
- http://www.cpmd.org
Car-Parrinello Molecular Dynamics (CPMD)

- **CPMD**
 - A parallelized implementation of density functional theory (DFT)
 - Particularly designed for ab-initio molecular dynamics
 - Brings together methods
 - Classical molecular dynamics
 - Solid state physics
 - Quantum chemistry

- **CPMD supports MPI and Mixed MPI/SMP**

- **CPMD is distributed and developed by the CPMD consortium**
Objectives

• The following was done to provide best practices
 – CPMD performance benchmarking
 – Interconnect performance comparisons
 – Understanding CPMD communication patterns
 – Power-efficient simulations

• The presented results will demonstrate
 – The scalability of the compute environment to provide nearly linear application scalability
 – The capability of CPMD to achieve scalable productivity
 – Considerations for power saving through balanced system configuration
Test Cluster Configuration

• **Dell™ PowerEdge™ M610 14-node cluster**
 - Six-Core Intel X5670 @ 2.93 GHz CPUs
 - Memory: 24GB memory, DDR3 1333 MHz
 - OS: CentOS5U4, OFED 1.5.1 InfiniBand SW stack

• **Intel Cluster Ready certified cluster**

• **Mellanox ConnectX-2 InfiniBand adapters and switches**

• **MPI: Intel MPI 4.0 U1, Open MPI 1.5, Platform MPI 8.0.1**

• **Compilers: GNU Compilers 4.1.2, Intel Compilers 12.0.0**

• **Math Libraries: ATLAS 3.8.3, BLAS 3.0.8, LAPACK, FFTW 2.1.5, MKL 10.3**

• **Application: CPMD 3.13.2_01**

• **Benchmark: Si512 Inp-1**
About Intel® Cluster Ready

• Intel® Cluster Ready systems make it practical to use a cluster to increase your simulation and modeling productivity
 – Simplifies selection, deployment, and operation of a cluster

• A single architecture platform supported by many OEMs, ISVs, cluster provisioning vendors, and interconnect providers
 – Focus on your work productivity, spend less management time on the cluster

• Select Intel Cluster Ready
 – Where the cluster is delivered ready to run
 – Hardware and software are integrated and configured together
 – Applications are registered, validating execution on the Intel Cluster Ready architecture
 – Includes Intel® Cluster Checker tool, to verify functionality and periodically check cluster health
Dell PowerEdge Servers helping Simplify IT

- **System Structure and Sizing Guidelines**
 - 14-node cluster build with Dell PowerEdge™ M610 blades server
 - Servers optimized for High Performance Computing environments
 - Building Block Foundations for best price/performance and performance/watt

- **Dell HPC Solutions**
 - Scalable Architectures for High Performance and Productivity
 - Dell's comprehensive HPC services help manage the lifecycle requirements.
 - Integrated, Tested and Validated Architectures

- **Workload Modeling**
 - Optimized System Size, Configuration and Workloads
 - Test-bed Benchmarks
 - ISV Applications Characterization
 - Best Practices & Usage Analysis
CPMD Performance – Interconnect

- **InfiniBand enables higher scalability**
 - Up to 319% higher performance than Ethernet at 14 nodes
- **Ethernet would not scale beyond 1 node**
 - Show virtually no gain by increasing nodes

![CPMD Benchmark](image)

CPMD Benchmark

\[
\text{Si}_{12} \text{ inp-1}
\]

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Simulation/Hour</th>
<th>GigE</th>
<th>InfiniBand QDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Higher is better

12 Cores/Node
CPMD Performance – Nehalem vs Westmere

- Westmere processors enabled better performance
 - Up to 48% gain with 14 Westmere node compared to 16 Nehalem nodes

Higher is better
• Intel compilers and MKL enable the best performance
 – Up to 450% gain on a single node versus GNU compilers with the BLAS libraries
 – Up to 33% gain on a single node versus GNU compilers with the ATLAS libraries

• ATLAS can be a good alternative to BLAS
 – ATLAS (Automatically Tuned Linear Algebra Software)
Selecting tuned collectives algorithms can provide boost performance
- Up to 104% in performance improvement
- The difference is more apparent on larger number of nodes or processes
- Tuning MPI_Alltoall and MPI_Allreduce can make a positive impact

Optimize Open MPI using the following MCA parameters
- coll_tuned_use_dynamic_rules 1, coll_tuned_alltoall_algorithm 3,
coll_tuned_allreduce_algorithm 4, mpi_paffinity_alone 1

CPMD Benchmark
(Si_{512} inp-1)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Open MPI 1.5</th>
<th>Open MPI 1.5 Tuned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Higher is better

12 Cores/Node
CPMD Performance – MPI

- Intel MPI shows better scalability over the tuned Open MPI
 - Shows 30% gain over tuned Open MPI with GNU compilers and ATLAS

CPMD Benchmark

(Si$_{512}$ inp-1)

```
Number of Nodes

<table>
<thead>
<tr>
<th>Simulation/Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
```

- Open MPI 1.5 Tuned Intel+MKL
- Open MPI 1.5 Tuned GNU+ATLAS
- IntelMPI Intel+MKL
- Platform MPI GNU+ATLAS

Higher is better
The most used MPI functions with this dataset is MPI_Alltoall.

MPI_Alltoall accounted for 72% of all MPI calls on a 14-node job.
CPMD Profiling – Time Spent of by MPI Calls

• **Majority of time is spent on MPI_Alltoall and MPI_Bcast**
 – MPI_Alltoall is accounted for 38% of time spent on a 14-node job
 – MPI_Bcast is accounted for 36% of time spent on a 14-node job
• Majority of messages are small messages
 – Messages between 256B and 1KB are the majority for the 14-node and 8-node runs
 – Accounted for 98% of the MPI message sizes on the 14 nodes
Summary

• Interconnects effect to CPMD performance
 – InfiniBand enables higher performance/scalability
 – Up to 319% higher performance than Ethernet at 14 nodes

• Intel Westmere processor delivers better performance
 – Up to 48% gain on a 14-node Westmere processors versus 16-node on Nehalem processors

• Intel compilers and MKL provides better performance
 – Up to 450% gain on a single node over GNU compilers with BLAS
 – Up to 33% gain on a single node over GNU compilers with ATLAS

• Intel MPI shows better scalability over the tuned Open MPI
• Tuning MPI_Alltoall and MPI_Allreduce provide up to 104% improvement for Open MPI
• Majority of MPI messages are between 256B and 1KB
• MPI_Alltoall is the most used MPI functions
• Majority of MPI time is spent on MPI_Alltoall and MPI_Bcast
Thank You
HPC Advisory Council