DL-POLY Performance Benchmark and Profiling

August 2013
• The following research was performed under the HPC Advisory Council activities
 – Special thanks for: HP, Mellanox

• For more information on the supporting vendors solutions please refer to:

• For more information on the application:
• **DL-POLY**
 – Is a general purpose classical molecular dynamics simulation software
 – Developed at Daresbury Laboratory by I.T. Todorov and W. Smith.

• **DL_POLY_4**
 – General design provides scalable performance from a single processor workstation to a high performance parallel computer.
 – Can be compiled a parallel application code, provided an MPI2 instrumentation is available on the parallel machine
 – DL_POLY_4 offers fully parallel I/O as well as a netCDF alternative (HDF5 library dependence) to the default ASCII trajectory file
 – It is supplied in source form under license
Objectives

• The presented research was done to provide best practices
 – DL-POLY performance benchmarking
 – Interconnect performance comparisons
 – MPI performance comparison
 – Understanding DL-POLY communication patterns

• The presented results will demonstrate
 – The scalability of the compute environment to provide nearly linear application scalability
Test Cluster Configuration

- **HP ProLiant SL230s Gen8 4-node “Athena” cluster**
 - Processors: Dual Eight-Core Intel Xeon E5-2680 @ 2.7 GHz
 - Memory: 32GB per node, 1600MHz DDR3 DIMMs
 - OS: RHEL 6 Update 2, OFED 2.0 InfiniBand SW stack

- **Mellanox Connect-IB FDR InfiniBand Adapters and ConnectX-3 VPI Adapters**

- **Mellanox SwitchX SX6036 56Gb/s FDR InfiniBand and 40G/s Ethernet VPI Switch**

- **MPI: Platform MPI 8.3**

- **Compiler: Intel Compilers Version 13 (Intel Composer XE 2013)**

- **Application: DL-POLY 4.04**

- **Benchmark Workload:**

- **Input dataset:**
 - Sodium Chloride with Ewald summation. System size is 27K ions
About HP ProLiant SL230s Gen8

<table>
<thead>
<tr>
<th>Item</th>
<th>SL230 Gen8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Two Intel® Xeon® E5-2600 Series, 4/6/8 Cores,</td>
</tr>
<tr>
<td>Chipset</td>
<td>Intel® Sandy Bridge EP Socket-R</td>
</tr>
<tr>
<td>Memory</td>
<td>(512 GB), 16 sockets, DDR3 up to 1600MHz, ECC</td>
</tr>
<tr>
<td>Max Memory</td>
<td>512 GB</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Two LFF non-hot plug SAS, SATA bays or Four SFF non-hot plug SAS, SATA,</td>
</tr>
<tr>
<td></td>
<td>SSD bays Two Hot Plug SFF Drives (Option)</td>
</tr>
<tr>
<td>Max Internal Storage</td>
<td>8TB</td>
</tr>
<tr>
<td>Networking</td>
<td>Dual port 1GbE NIC/ Single 10G Nic</td>
</tr>
<tr>
<td>I/O Slots</td>
<td>One PCIe Gen3 x16 LP slot 1Gb and 10Gb Ethernet, IB, and FlexFabric options</td>
</tr>
<tr>
<td>Ports</td>
<td>Front: (1) Management, (2) 1GbE, (1) Serial, (1) S.U.V port, (2) PCIe, and Internal Micro SD card & Active Health</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>750, 1200W (92% or 94%), high power chassis</td>
</tr>
<tr>
<td>Integrated Management</td>
<td>iLO4 hardware-based power capping via SL Advanced Power Manager</td>
</tr>
<tr>
<td>Additional Features</td>
<td>Shared Power & Cooling and up to 8 nodes per 4U chassis, single GPU support, Fusion I/O support</td>
</tr>
<tr>
<td>Form Factor</td>
<td>16P/8GPUs/4U chassis</td>
</tr>
</tbody>
</table>
• **InfiniBand FDR is the most efficient inter-node communication for DL-POLY**
 - Outperforms 1GbE by 385% at 4 nodes
 - Outperforms 10GbE by 343% at 4 nodes
 - Outperforms 40GbE by 47% at 4 nodes

• **1GbE do not show performance gain beyond 1 node**

DL-POLY Benchmark
(NaCl 27K)

![Bar chart showing performance comparisons for different network speeds at various node counts.](chart.png)

Higher is better
DL-POLY Performance - Processors

- Intel E5-2680 processors (Sandy Bridge) cluster outperforms prior CPU generation
 - Performs 158% higher than X5670 cluster at 4 nodes
- System components used:
 - Athena: 2-socket Intel E5-2680 @ 2.7GHz, 1600MHz DIMMs, FDR InfiniBand, 1HDD
 - Plutus: 2-socket Intel X5670 @ 2.93GHz, 1333MHz DIMMs, QDR InfiniBand, 1HDD
 - Athena has PCIe Gen3 bus which can enhance the communication at scale

![DL-POLY Benchmark](image)

Higher is better

Higher is better

Plutus Athena
InfiniBand FDR reduces the communication time at scale

- InfiniBand FDR consumes about 43% of total runtime
- 40GbE consumes 65% of total time, while 10GbE and 1GbE consumes about 87%
Mostly used MPI functions:
- MPI_Allreduce (27%) and MPI_Wait(24%), MPI_Irecv (17%), MPI_Send (17%)
The most time consuming MPI functions:
- MPI_Allreduce (53%), MPI_Recv(17%), MPI_Wait (8%)
DL-POLY Summary

- **HP ProLiant Gen8 servers delivers better DL-POLY Performance than its predecessor**
 - ProLiant Gen8 equipped with Intel E5 series processes and InfiniBand FDR
 - Provides 158% higher performance than the ProLiant G7 servers when compared at 4 nodes

- **InfiniBand FDR is the most efficient inter-node communication for DL-POLY**
 - Outperforms 1GbE by 385% (or by over 3x) at 4 nodes
 - Outperforms 10GbE by 343% at 4 nodes
 - Outperforms 40GbE by 47% at 4 nodes

- **DL-POLY MPI Profiling**
 - Heavy MPI communications are seen between MPI processes
 - InfiniBand FDR reduces communication time; leave more time for computation
 - InfiniBand FDR consumes 43% of total time, versus 65% 40GbE, versus 87% 1GbE and 10GbE
 - Non-blocking communications are seen:
 - Time spent: MPI_Allreduce (53%), MPI_Recv (17%), MPI_Wait (8%)
 - Most used: MPI_Allreduce (27%) and MPI_Wait (24%), MPI_Irecv (17%), MPI_Send (17%)
Thank You

HPC Advisory Council