ANSYS Fluent 14.5
Performance Benchmark and Profiling

March 2013
• The following research was performed under the HPC Advisory Council activities
 – Participating vendors: AMD, Dell, Mellanox
 – Compute resource - HPC Advisory Council Cluster Center
• For more info please refer to
 – http://www.amd.com
 – http://www.dell.com/hpc
 – http://www.mellanox.com
 – http://www.ansys.com
Computational Fluid Dynamics (CFD) is a computational technology

- Enables the study of the dynamics of things that flow
 - By generating numerical solutions to a system of partial differential equations which describe fluid flow
 - Enable better understanding of qualitative and quantitative physical phenomena in the flow which is used to improve engineering design

CFD brings together a number of different disciplines

- Fluid dynamics, mathematical theory of partial differential systems, computational geometry, numerical analysis, Computer science

ANSYS Fluent is a leading CFD application from ANSYS

- Widely used in almost every industry sector and manufactured product
Objectives

• The following was done to provide best practices
 – ANSYS Fluent performance benchmarking
 – Interconnect performance comparisons
 – CPU performance
 – Understanding Fluent communication patterns
 – Ways to increase Fluent productivity
 – MPI libraries comparisons

• The presented results will demonstrate
 – The scalability of the compute environment
 – The capability of Fluent to achieve scalable productivity
 – Considerations for performance optimizations
Test Cluster Configuration

- **Dell™ PowerEdge™ R815 11-node (704-core) “Vesta” cluster**
 - AMD™ Opteron™ 6174 (code name “Magny-Cours”) 12-cores @ 2.2 GHz CPUs
 - AMD™ Opteron™ 6276 (code name “Interlagos”) 16-cores @ 2.3 GHz CPUs
 - AMD™ Opteron™ 6380 (code name “Abu Dhabi”) 16-cores @ 2.5 GHz CPUs
- **4 CPU sockets per server node**
- **Mellanox ConnectX-3 VPI adapters for 40Gb/s QDR InfiniBand and 40Gb/s Ethernet**
- **Mellanox SwitchX™ 6036 36-Port InfiniBand switch**
- **Memory: 128GB memory per node DDR3 1333MHz**
- **OS: RHEL 6.2 MLNX-OFED 1.5.3 InfiniBand SW stack**
- **MPI: Intel MPI 4.0 Update 3, Open MPI 1.3.3, Platform MPI 8.2**
- **Application: ANSYS Fluent version 14.5**
- **Benchmark workload:**
 - sedan_4m (External Aerodynamics Flow Over a Passenger Sedan)
 - truck_poly_14m (External Flow Over a Truck Body with a Polyhedral Mesh. 14 million cells)
 - truck_111m (External flow case over a truck body. 111 mill cells)
Dell™ PowerEdge™ R815 11-node cluster

- HPC Advisory Council Test-bed System

- New 11-node 704 core cluster - featuring Dell PowerEdge™ R815 servers
 - Replacement system for Dell PowerEdge SC1435 (192 cores) cluster system following 2 years of rigorous benchmarking and product EOL
 - System to be redirected to explore HPC in the Cloud applications

- Workload profiling and benchmarking
 - Characterization for HPC and compute intense environments
 - Optimization for scale, sizing and configuration and workload performance
 - Test-bed Benchmarks
 - RFPs
 - Customers/Prospects, etc
 - ISV & Industry standard application characterization
 - Best practices & usage analysis
About Dell PowerEdge™ Platform Advantages

Best of breed technologies and partners

Combination of AMD™ Opteron™ 6300 series platform and Mellanox ConnectX®-3 InfiniBand on Dell HPC

Solutions provide the ultimate platform for speed and scale

• Dell PowerEdge R815 system delivers 4 socket performance in dense 2U form factor
• Up to 64 core/32DIMMs per server – 1344 core in 42U enclosure

Integrated stacks designed to deliver the best price/performance/watt

• 2x more memory and processing power in half of the space
• Energy optimized low flow fans, improved power supplies and dual SD modules

Optimized for long-term capital and operating investment protection

• Platform longevity across 3 CPU generations (AMD™ Opteron™ 6100, 6200 & 6300 series)
• System expansion, component upgrades and feature releases
Fluent Performance – Processor Generations

- **AMD Opteron 6300 series outperforms prior CPU generations**
 - Delivers up to 15% gain over the AMD Opteron 6200 “Interlagos” series
 - Delivers up to 50% gain over the AMD Opteron 6100 “Magny-Cours” series
 - Additional performance is expected if 1600MHz (instead of 1333MHz) DIMMs are used

- **The following configuration differences are noted:**
 - Mangy-Cours: Fluent 13.0, AMD Opteron 6174 @ 2.2GHz, ConnectX-2 HCA
 - Interlagos: Fluent 14.5, AMD Opteron 6276 @ 2.3GHz, ConnectX-3 HCA
 - Abu Dhabi: Fluent 14.5, AMD Opteron 6380 @ 2.5GHz, ConnectX-3 HCA

Fluent 14 Benchmark (sedan_4m)

- Higher is better

Rating: Jobs/Day
Fluent Performance – Processor Generations

- **AMD Opteron 6300 series demonstrate modest gain over past generations**
 - Delivers up to 9% gain over the AMD Opteron 6200 “Interlagos” series
 - Delivers up to 72% gain over the AMD Opteron 6100 “Magny-Cours” series
 - Additional performance is expected if 1600MHz (instead of 1333MHz) DIMMs are used

- **The following configuration differences are noted:**
 - Mangy-Cours: Fluent 13.0, AMD Opteron 6174 @ 2.2GHz, ConnectX-2 HCA
 - Interlagos: Fluent 14.5, AMD Opteron 6276 @ 2.3GHz, ConnectX-3 HCA
 - Abu Dhabi: Fluent 14.5, AMD Opteron 6380 @ 2.5GHz, ConnectX-3 HCA
• The 4P AMD “Abu Dhabi” cluster delivers the best performance
 – 4-socket PowerEdge R815 Vesta cluster delivers compute density and performance
 – Up to 76% higher performance compared to best published results

• Published results for Fluent 14:
Fluent Performance – Processes Per Node

- Running with 64PPN yields doubles the system utilization than with 32PPN
 - 4P servers (64 cores/node) delivers almost twice the performance over a 2P server

Fluent 14 Benchmark
(sedan_4m)

Fluent 14 Benchmark
(truck_poly_14m)

Higher is better
Fluent Performance – Interconnects

- **InfiniBand shows continuous gain as the cluster scales for sedan_4m**
 - Up to 159% higher productivity compared to 10GbE at 11 nodes (704 cores)
 - Over 12 times higher productivity compared to 1GbE at 11 nodes (704 cores)
 - Ethernet does not scale; performance declines form 4 nodes and beyond

![Fluent 14 Benchmark](sedan_4m)

Higher is better

- 1GbE
- 10GbE
- QDR InfiniBand

64 Cores/Node
Fluent Performance – Interconnects

- **InfiniBand shows continuous gain as the cluster scales for sedan_4m**
 - Up to 58% higher productivity compared to 10GbE at 11 nodes (704 cores)
 - Over 6 times higher productivity compared to 1GbE at 11 nodes (704 cores)
 - Ethernet solutions shows performance decline from 8 nodes and beyond

Fluent 14 Benchmark

(truck_poly_14m)

![Fluent 14 Benchmark Graph](image)

Higher is better

64 Cores/Node
Fluent Performance – XRC

- Running XRC with InfiniBand scalability at higher CPU core counts
 - Up to 40% better performance for 11 nodes (or 704 cores) for truck_poly_11m
 - Up to 21% better performance for 8 nodes (or 512 cores) for sedan_4m

- To Enable XRC in ANSYS Fluent by modifying the mpirun.fl file:
 - Include “-mca btl_openib_receive_queues X,9216,256,128,32:X,65536,256,128,32” for openmpi
 - Include the “-xrc” flag in the my_protocol_flags for pcmpi
 - Need to build Open MPI separately to run as the vendor-supplied not built with XRC support

Fluent 14 Benchmark (sedan_4m)

```
Nodes | Rating
-----|--------
1    | 0
2    | 5000
4    | 10000
8    | 15000
```

Fluent 14 Benchmark (truck_poly_14m)

```
Nodes | Rating
-----|--------
1    | 0
2    | 5000
4    | 10000
8    | 15000
11   | 20000
```

Higher is better

64 Cores/Node
Fluent Profiling – MPI/User Time Ratio

- Gradual increase in communications time as the cluster scales
 - truck_poly_14m spends more time on MPI communications than truck_111m
 - Network infrastructure like InfiniBand allows Fluent to run at scale

FLUENT Profiling
(truck_111m)
MPI/User Time Ratio

Fluent Profiling
(truck_poly_14m)
MPI/User Time Ratio

QDR InfiniBand
Fluent Profiling – Time Spent of MPI Calls

- **MPI_Recv is the largest time consumer for truck_poly_14m & truck_111m**
 - Occupies 34% of all MPI time for 8 node in both truck_poly_14m and truck_111m
- **More time spent on data MPI communication than MPI synchronization**
 - Both truck_poly_14m and truck_111m show large time in MPI_Recv
Fluent Profiling – MPI Message Sizes

- **MPI message sizes are concentrated in range of small message sizes**
 - Majority are in the range of 0B and 64B
 - Small messages are typically used for synchronization, implies Fluent is latency sensitive
- **Large message sizes do exist but at a smaller percentage**
 - Larger messages (65B to 4MB) responsible for data transfers between the MPI ranks
 - Implies that Fluent does data movement which requires good network throughput

FLUENT Profiling
(truck_111m)

MPI Message Sizes

<table>
<thead>
<tr>
<th>Message Sizes</th>
<th>Number of Messages (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B–64B</td>
<td>200</td>
</tr>
<tr>
<td>65B–256</td>
<td>150</td>
</tr>
<tr>
<td>1K–4K</td>
<td>100</td>
</tr>
<tr>
<td>4K–16K</td>
<td>50</td>
</tr>
<tr>
<td>16K–64K</td>
<td>20</td>
</tr>
<tr>
<td>64K–268K</td>
<td>10</td>
</tr>
<tr>
<td>256K–1M</td>
<td>5</td>
</tr>
<tr>
<td>1M–4M</td>
<td>2</td>
</tr>
<tr>
<td>4M–2G</td>
<td>1</td>
</tr>
<tr>
<td>2G–inf</td>
<td>0</td>
</tr>
</tbody>
</table>

Fluent Profiling
(truck_poly_14m)

MPI Message Sizes

<table>
<thead>
<tr>
<th>Message Sizes</th>
<th>Number of Messages (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B–64B</td>
<td>120</td>
</tr>
<tr>
<td>65B–256</td>
<td>80</td>
</tr>
<tr>
<td>1K–4K</td>
<td>40</td>
</tr>
<tr>
<td>4K–16K</td>
<td>20</td>
</tr>
<tr>
<td>16K–64K</td>
<td>10</td>
</tr>
<tr>
<td>64K–268K</td>
<td>5</td>
</tr>
<tr>
<td>256K–1M</td>
<td>2</td>
</tr>
<tr>
<td>1M–4M</td>
<td>1</td>
</tr>
<tr>
<td>4M–2G</td>
<td>0</td>
</tr>
<tr>
<td>2G–inf</td>
<td>0</td>
</tr>
</tbody>
</table>
Fluent Profiling – Data Transfer Per Process

- Data transferred to each MPI rank is generally the same except for the last
 - Around 500MB per MPI rank for truck_poly_14m; around 2GB to 4GB for truck_111m
 - The last MPI rank has a significantly higher data rate than the rest for sedan_4m
 - Relatively
Fluent Profiling – Aggregated Data Transfer

- **Aggregated data transfer refers to:**
 - Total amount of data being transferred in the network between all MPI ranks collectively

- **The total data transfer steadily increases as the cluster scales**
 - As a compute node being added, more data communications will happen

- **Substantially more communications occur for larger dataset**
 - The rate of the increase is consistent between the 2 datasets
Summary

- Fluent is a leading CFD application from ANSYS
- CPU
 - AMD Opteron 6380 “Abu Dhabi” CPUs provides higher system utilization over prior generations
 - Delivers up to 72% higher performance versus AMD Opteron 6172 “Magny-Cours” CPUs
 - Delivers up to 15% higher performance versus AMD Opteron 6276 “Interlagos” CPUs
 - Running with 4P servers (64 cores/node) delivers twice the performance over a 2P server
 - 4P platform provides up to 76% higher performance compared to best published ANSYS benchmark results
- Networking
 - QDR InfiniBand allows Fluent to scale as it provides low latency and high throughput:
 - Runs up to 159% faster compared to 10GbE at 11 nodes (704 cores)
 - Runs up to 12 times faster compared to 1GbE at 11 nodes (704 cores)
 - Ethernet solutions do not scale; performance declines from 4 nodes and beyond
 - Running XRC with InfiniBand delivers 40% higher performance at 11 nodes (or 704 cores)
- Data transfer on the network
 - Significantly more data being transferred for the larger dataset
 - Tends to increase steadily as cluster scales
- MPI
 - Shows Fluent uses a range of MPI API for communications and synchronizations
Thank You
HPC Advisory Council