ANSYS FLUENT 13
Performance Benchmark and Profiling

April 2011
The following research was performed under the HPC Advisory Council activities

- Participating vendors: AMD, Dell, Mellanox
- Compute resource - HPC Advisory Council Cluster Center

For more info please refer to

- http://www.amd.com
- http://www.dell.com/hpc
- http://www.mellanox.com
- http://www.ansys.com
Computational Fluid Dynamics (CFD) is a computational technology

- Enables the study of the dynamics of things that flow
 - By generating numerical solutions to a system of partial differential equations which describe fluid flow
 - Enable better understanding of qualitative and quantitative physical phenomena in the flow which is used to improve engineering design

CFD brings together a number of different disciplines

- Fluid dynamics, mathematical theory of partial differential systems, computational geometry, numerical analysis, Computer science

ANSYS FLUENT is a leading CFD application from ANSYS

- Widely used in almost every industry sector and manufactured product
Objectives

• The following was done to provide best practices
 – ANSYS FLUENT performance benchmarking
 – Interconnect performance comparisons
 – CPU performance
 – Understanding FLUENT communication patterns
 – Ways to increase FLUENT productivity
 – MPI libraries comparisons

• The presented results will demonstrate
 – The scalability of the compute environment
 – The capability of FLUENT to achieve scalable productivity
 – Considerations for performance optimizations
Test Cluster Configuration

• Dell™ PowerEdge™ R815 11-node (528-core) cluster
• AMD™ Opteron™ 6174 (code name “Magny-Cours”) 12-cores @ 2.2 GHz CPUs
• 4 CPU sockets per server node
• Mellanox ConnectX-2 VPI adapters for 40Gb/s QDR InfiniBand and 10Gb/s Ethernet
• Mellanox MTS3600Q 36-Port 40Gb/s QDR InfiniBand switch
• Fulcrum based 10Gb/s Ethernet switch
• Memory: 128GB memory per node DDR3 1333MHz
• OS: RHEL 5.5, MLNX-OFED 1.5.2 InfiniBand SW stack
• MPI: Platform MPI 7.1
• Application: ANSYS FLUENT version 13.0.0
• Benchmark workload:
 – sedan_4m (External Aerodynamics Flow Over a Passenger Sedan)
 – truck_poly_14m (External Flow Over a Truck Body with a Polyhedral Mesh)
Dell™ PowerEdge™ R815 11-node cluster

• HPC Advisory Council Test-bed System

• New 11-node 528 core cluster - featuring Dell PowerEdge™ R815 servers
 – Replacement system for Dell PowerEdge SC1435 (192 cores) cluster system following 2 years of rigorous benchmarking and product EOL
 • System to be redirected to explore HPC in the Cloud applications

• Workload profiling and benchmarking
 – Characterization for HPC and compute intense environments
 – Optimization for scale, sizing and configuration and workload performance
 – Test-bed Benchmarks
 • RFPs
 • Customers/Prospects, etc
 – ISV & Industry standard application characterization
 – Best practices & usage analysis
Best of breed technologies and partners
Combination of AMD™ Opteron™ 6100 series platform and Mellanox ConnectX InfiniBand on Dell HPC
Solutions provide the ultimate platform for speed and scale
• Dell PowerEdge R815 system delivers 4 socket performance in dense 2U form factor
• Up to 48 core/32DIMMs per server – 1008 core in 42U enclosure

Integrated stacks designed to deliver the best price/performance/watt
• 2x more memory and processing power in half of the space
• Energy optimized low flow fans, improved power supplies and dual SD modules

Optimized for long-term capital and operating investment protection
• System expansion
• Component upgrades and feature releases
FLUENT Performance – Interconnects

- **Dataset: sedan_4m**
 - External Flow Over a Passenger Sedan
 - 3.6 million cells of mixed type, k-epsilon model, pressure-based coupled solver

- **InfiniBand shows continuous gain as the cluster scales**
 - Up to 117% higher performance than 10GigE

FLUENT Benchmark
(sedan_4m)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>117%</td>
</tr>
</tbody>
</table>

- **Higher is better**
- **48 Cores/Node**

Legend:
- **10GigE**
- **InfiniBand QDR**
FLUENT Performance – Interconnects

- **Dataset: truck_poly_14m**
 - External Flow Over a Truck Body with a Polyhedral Mesh
 - 14 million polyhedral cells, DES model with the segregated implicit solver

- **InfiniBand shows continuous gain as the cluster scales**
 - Up to 136% higher performance than 10GigE

FLUENT Benchmark
(truck_poly_14m)

![FLUENT Benchmark Graph]

Higher is better

- **10GigE**
- **InfiniBand QDR**

48 Cores/Node
Increasing CPU core frequency enables higher job efficiency

- Up to 11% better job performance between 2200MHz vs 1800MHz on 8-node
- Delivers a gain of 10-13% on average in better job performance
FLUENT Performance – Single vs Dual Rail

- **Dual-rail (Dual InfiniBand cards) enables better performance than single-rail**
 - Up to 15% better job performance when equipped with 2 InfiniBand cards per node
 - Delivers network bandwidth that requires for data communications

FLUENT Benchmark
(truck_poly_14m)

![FLUENT Benchmark Chart](chart.png)

Higher is better

Nodes

- **1**
- **2**
- **4**
- **8**

Rating

- **Single-Rail**
- **Dual-Rail**

48 Cores/Node
FLUENT Profiling – MPI/User Time Ratio

- Gradual increase in communications time as the cluster scales
 - More time is spent on communications than computation after 6-node in sedan_4m
 - More time is spent on communications than computation after 4-node in truck_poly_14m

![FLUENT Profiling (sedan_4m) MPI/User Time Ratio](chart1)

- Number of Nodes
- Percentage of Time
 - MPI time
 - User time

![FLUENT Profiling (truck_poly_14m) MPI/User Time Ratio](chart2)

- Number of Nodes
- Percentage of Time
 - MPI time
 - User time

48 Cores/Node
FLUENT Profiling – Number of MPI Calls

- **The most used MPI function is MPI_Iprobe**
 - MPI_Iprobe does non-blocking test for a message
 - Represents 92% of MPI calls used for 8-node in sedan_4m, 82% in truck_poly_14m
- **FLUENT uses a full range of MPI calls**
 - For blocking, non-blocking and point-to-point and collective communications
- **Data communications increases for larger dataset**
 - MPI_Irecv and MPI_Isend at a higher rate for truck_poly_14m
FLUENT Profiling – Time Spent of MPI Calls

- The largest time consumer is **MPI_Recv** for data communications
 - Occupies 37% of all MPI time for 8 node in sedan_4m
 - Occupies 53% of all MPI time for 8 node in truck_poly_14m
- The next largest time consumer are **MPI_Waitall** and **MPI_Allreduce**
 - MPI_Allreduce(17%) and MPI_Waitall(18%) for 8 node in sedan_4m
 - MPI_Waitall(14%) and MPI_Allreduce(12%) for 8 node in truck_poly_14m
- More time spent on data MPI communication than MPI synchronization
FLUENT Profiling – MPI Message Sizes

- **MPI message sizes are concentrated in range of small message sizes**
 - Majority are in the range of 0B and 64B
 - Small messages are typical used for synchronization, implies FLUENT is latency sensitive
- **Larger message sizes also appeared but at a smaller percentage**
 - Larger messages (65B to 4MB) responsible for data transfers between the MPI ranks
 - Implies that FLUENT also requires high network throughput
• Data transferred to each MPI rank is generally the same except for the last
 – Around 450MB per MPI rank for truck_poly_14m, and 100MB for sedan_4m,
 – The last MPI rank has a significantly higher data rate than the rest
• As the cluster scales, data transfers remains generally to the same level
Aggregated data transfer refers to:
- Total amount of data being transferred in the network between all MPI ranks collectively

The total data transfer steadily increases as the cluster scales
- As a compute node being added, more data communications will happen

Significantly more communications happen for larger dataset
Summary

• **FLUENT is a leading CFD application from ANSYS**

• **Networking**
 – InfiniBand QDR allows FLUENT to scale as it provides low latency and high throughput
 – Dual rail (two adapters) can increase the performance by 15% on a 4 socket server

• **CPU**
 – Shows gains in job productivity by using higher CPU frequency

• **Data transfer on the network**
 – Significantly more data being transferred for the larger dataset
 – Tends to increase steadily as cluster scales

• **MPI**
 – Shows FLUENT uses a range of MPI API for communications and synchronizations
Thank You
HPC Advisory Council