ANSYS Fluent 14
Performance Benchmark and Profiling
October 2012
• The following research was performed under the HPC Advisory Council activities
 – Special thanks for: HP, Mellanox

• For more information on the supporting vendors solutions please refer to:

• For more information on the application:
 – http://www.ansys.com
- **Computational Fluid Dynamics (CFD) is a computational technology**
 - Enables the study of the dynamics of things that flow
 - By generating numerical solutions to a system of partial differential equations which describe fluid flow
 - Enable better understanding of qualitative and quantitative physical phenomena in the flow which is used to improve engineering design

- **CFD brings together a number of different disciplines**
 - Fluid dynamics, mathematical theory of partial differential systems, computational geometry, numerical analysis, Computer science

- **ANSYS FLUENT is a leading CFD application from ANSYS**
 - Widely used in almost every industry sector and manufactured product
Objectives

• The presented research was done to provide best practices
 – Fluent performance benchmarking
 – Interconnect performance comparisons
 – MPI performance comparison
 – Understanding Fluent communication patterns

• The presented results will demonstrate
 – The scalability of the compute environment to provide nearly linear application scalability
Test Cluster Configuration

- **HP ProLiant SL230s Gen8 4-node “Athena” cluster**
 - Processors: Dual Eight-Core Intel Xeon E5-2680 @ 2.7 GHz
 - Memory: 32GB per node, 1600MHz DDR3 DIMMs
 - OS: RHEL 6 Update 2, OFED 1.5.3-3.10 InfiniBand SW stack

- **Mellanox ConnectX-3 VPI InfiniBand adapters**

- **Mellanox SwitchX SX6036 56Gb/s InfiniBand and 40G/s Ethernet Switch**

- **MPI (Vendor-provided):** Intel MPI 4 U2, Open MPI 1.3.3, Platform MPI 8.1.2

- **Application:** ANSYS Fluent 14.0.0

- **Benchmarks:**
 - Eddy_417k – Reacting Flow with Eddy Dissipation Model (417K elements)
About HP ProLiant SL230s Gen8

<table>
<thead>
<tr>
<th>Item</th>
<th>SL230 Gen8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Two Intel® Xeon® E5-2600 Series, 4/6/8 Cores,</td>
</tr>
<tr>
<td>Chipset</td>
<td>Intel® Sandy Bridge EP Socket-R</td>
</tr>
<tr>
<td>Memory</td>
<td>(512 GB), 16 sockets, DDR3 up to 1600MHz, ECC</td>
</tr>
<tr>
<td>Max Memory</td>
<td>512 GB</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Two LFF non-hot plug SAS, SATA bays or Four SFF non-hot plug SAS, SATA, SSD bays, Two Hot Plug SFF Drives (Option)</td>
</tr>
<tr>
<td>Max Internal Storage</td>
<td>8TB</td>
</tr>
<tr>
<td>Networking</td>
<td>Dual port 1GbE NIC/ Single 10G NIC</td>
</tr>
<tr>
<td>I/O Slots</td>
<td>One PCIe Gen3 x16 LP slot 1Gb and 10Gb Ethernet, IB, and FlexFabric options</td>
</tr>
<tr>
<td>Ports</td>
<td>Front: (1) Management, (2) 1GbE, (1) Serial, (1) S.U.V port, (2) PCIe, and Internal Micro SD card & Active Health</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>750, 1200W (92% or 94%), high power chassis</td>
</tr>
<tr>
<td>Integrated Management</td>
<td>iLO4 hardware-based power capping via SL Advanced Power Manager</td>
</tr>
<tr>
<td>Additional Features</td>
<td>Shared Power & Cooling and up to 8 nodes per 4U chassis, single GPU support, Fusion I/O support</td>
</tr>
<tr>
<td>Form Factor</td>
<td>16P/8GPUs/4U chassis</td>
</tr>
</tbody>
</table>
Fluent Performance – CPU Generations

• Intel E5-2680 (Sandy Bridge) cluster outperforms prior generations
 – Performs 46% better than X5670 “Plutus” cluster nodes

• System components used:
 – Athena: 2-socket Intel E5-2680 @ 2.7GHz, 1600MHz DIMMs, FDR IB
 – Plutus: 2-socket Intel X5670 @ 2.93GHz, 1333MHz DIMMs, QDR IB

Fluent 14 Benchmark
(首个_417k)

Platform MPI
InfiniBand FDR

Higher is better
InfiniBand FDR is the most efficient inter-node communication for Fluent
- Outperforms 1GbE by 230% at 4 nodes
- Outperforms 40GbE by 80% at 4 nodes
Fluent Performance – MPI

- **Platform MPI provides better scalability than Open MPI**
 - Fluent 14 provides Platform MPI as the default MPI option
 - Up to 24% better performance at 4 nodes

- **Default Fluent run script is used for all cases shown**
 - No other optimization flags were added

Fluent 14 Benchmark

(eddy_417k)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Intel MPI</th>
<th>Open MPI</th>
<th>Platform MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

InfiniBand FDR

Higher is better
• **InfiniBand FDR reduces the time needed for communication**
 – InfiniBand FDR frees up more time for computation
 – Ethernet solutions consume from 74% to 86% of time in MPI communications

![Fluent 14 Profiling](image)
- **Fluent 14 Profiling** (eddy_417k, 4 nodes, 1GbE)
 - MPI/User Time Ratio
 - **14%** MPI time, **86%** User time
 - **Higher is better**

![Fluent 14 Profiling](image)
- **Fluent 14 Profiling** (eddy_417k, 4 nodes, 10GbE)
 - MPI/User Time Ratio
 - **26%** MPI time, **74%** User time

![Fluent 14 Profiling](image)
- **Fluent 14 Profiling** (eddy_417k, 4 nodes, InfiniBand FDR)
 - MPI/User Time Ratio
 - **47%** MPI time, **53%** User time

16 Processes/Node
Fluent Profiling – # of MPI Calls

- The most used MPI calls is MPI_Iprobe
 - Aside from MPI_Iprobe, MPI_Isend and Irecv are the next most used calls

Showing All MPI calls

Fluent Profiling
(eddy_417k)
Number of MPI Calls

Excluding MPI_Iprobe

Fluent Profiling
(eddy_417k)
Number of MPI Calls

Higher is better

16 Processes/Node
Fluent Profiling – MPI Communication Time

- Majority of MPI communication time is spent on MPI_Init
 - MPI_Init(27%), MPI_Recv(28%)

Fluent Profiling
(eddy_417k, 4-node)
% Time Spent of MPI Calls

Fluent Profiling
(eddy_417k)
Time Spent of MPI Calls

MPI Functions

- 1 Node
- 2 Nodes
- 3 Nodes
- 4 Nodes
Fluent Profiling – MPI Message Sizes

- Majority of messages are small messages
 - Messages below 4KB are mostly used

Fluent Profiling (eddy_417k)
MPI Message Sizes

![Message Sizes Chart]

- 1 Node
- 2 Nodes
- 3 Nodes
- 4 Nodes
Fluent Summary

• **HP ProLiant Gen8 servers delivers better performance than its predecessor**
 – ProLiant Gen8 equipped with Intel E5 series processes and InfiniBand FDR
 – Up to 46% higher performance than ProLiant G7 (running Intel Xeon X5670) when compared at 4 nodes

• **InfiniBand FDR is the most efficient inter-node communication for Fluent**
 – Outperforms 1GbE by 230% at 4 nodes
 – Outperforms 10GbE by 80% at 4 nodes

• **Fluent Profiling**
 – Platform MPI performs 24% better than Open MPI, and 16% better than Intel MPI
 – InfiniBand FDR reduces communication time; provides more time for computation
 • InfiniBand FDR consumes 53% of total time, versus 74-86% for Ethernet solutions
 – MPI:
 • Large MPI call volumes for testing non-blocking data transfers (MPI_Iprobe, MPI_Isend, MPI_Irecv)
 • MPI time is spent mostly on MPI_Recv and MPI_Allreduce
 • Messages are concentrated in small messages, from 0B to 4KB
Thank You
HPC Advisory Council