GROMACS
Performance Benchmark and Profiling
September 2011
The following research was performed under the HPC Advisory Council activities

- Participating vendors: AMD, Dell, Mellanox
- Compute resource –
 - HPC Advisory Council Cluster Center

For more info please refer to
- http://www.amd.com
- http://www.dell.com/hpc
- http://www.mellanox.com
- http://www.gromacs.org
• GROMACS (GROningen MAchine for Chemical Simulation)
 – A molecular dynamics simulation package
 – Primarily designed for biochemical molecules
 • Such as proteins, lipids and nucleic acids
 • A lot of algorithmic optimizations have been introduced in the code
 • Extremely fast at calculating the nonbonded interactions
 – Ongoing development to extend GROMACS with interfaces both to Quantum Chemistry and Bioinformatics/databases
 – An open source software released under the GPL
Objectives

• The following was done to provide best practices
 – GROMACS performance benchmarking
 – Understanding GROMACS communication patterns
 – Ways to increase GROMACS productivity
 – Compilers and network interconnects comparisons

• The presented results will demonstrate
 – The scalability of the compute environment
 – The capability of GROMACS to achieve scalable productivity
 – Considerations for performance optimizations
Test Cluster Configuration

- Dell™ PowerEdge™ R815 11-node (528-core) cluster
- AMD™ Opteron™ 6174 (code name “Magny-Cours”) 12-cores @ 2.2 GHz CPUs
- 4 CPU sockets per server node
- Mellanox ConnectX-2 VPI adapters for 40Gb/s QDR InfiniBand and 10Gb/s Ethernet
- Mellanox MTS3600Q 36-Port 40Gb/s QDR InfiniBand switch
- Fulcrum-based 10Gb/s Ethernet Switch
- Memory: 128GB memory per node DDR3 1333MHz
- OS: RHEL 5.5, MLNX-OFED 1.5.3 InfiniBand SW stack
- MPI: Platform MPI 8.1.1
- Compilers: GNU Compilers 4.4, PGI 11.8
- Libraries: AMD ACML 4.4.0, fftpack, Intel MKL 10.2 Update 5
- Application: GROMACS 4.5.4
- Benchmark workload: DPPC in Water (d.dppc) (5000 steps, 10.0 ps.)
• HPC Advisory Council Test-bed System

• New 11-node 528 core cluster - featuring Dell PowerEdge™ R815 servers
 – Replacement system for Dell PowerEdge SC1435 (192 cores) cluster system following 2 years of rigorous benchmarking and product EOL
 • System to be redirected to explore HPC in the Cloud applications

• Workload profiling and benchmarking
 – Characterization for HPC and compute intense environments
 – Optimization for scale, sizing and configuration and workload performance
 – Test-bed Benchmarks
 • RFPs
 • Customers/Prospects, etc
 – ISV & Industry standard application characterization
 – Best practices & usage analysis
About Dell PowerEdge™ Platform Advantages

Best of breed technologies and partners

Combination of AMD™ Opteron™ 6100 series platform and Mellanox ConnectX InfiniBand on Dell HPC

Solutions provide the ultimate platform for speed and scale
- Dell PowerEdge R815 system delivers 4 socket performance in dense 2U form factor
- Up to 48 core/32DIMMs per server – 1008 core in 42U enclosure

Integrated stacks designed to deliver the best price/performance/watt
- 2x more memory and processing power in half of the space
- Energy optimized low flow fans, improved power supplies and dual SD modules

Optimized for long-term capital and operating investment protection
- System expansion
- Component upgrades and feature releases
GROMACS Performance – Interconnect

- **InfiniBand QDR delivers the best performance for GROMACS**
 - Seen up to 377% better performance than 10GigE on 11-node
- **Scalability limitation seen with Ethernet networks**
 - 10GigE performance starts to drop after 3-node
 - 1GigE performance drop takes place after 2-node

![GROMACS Performance](chart)

Higher is better

48 Cores/Node
• Higher CPU core frequency enables higher job performance
 – Up to 24% better job performance between 2200MHz vs 1800MHz
 – Up to 48% better job performance between 2200MHz vs 1400MHz
 – The increase in CPU core frequencies can directly improve the overall job performance

![GROMACS Performance Chart](chart.png)

Higher is better
GROMACS Performance – Compilers

- Executable generated by GNU compilers runs faster
 - Up to 7% faster than with PGI compilers
- Using the default optimization and linker flags:
 - **GNU**: “-O3 -msse2 -fomit-frame-pointer -finline-functions -Wall -Wno-unused -funroll-all-loops -std=gnu99”
 - **PGI**: “-tp istanbul -O4 -fastsse -Msmartalloc=huge -Mconcur -Mipa=fast,inline -Mvect=prefetch -Munroll -fPIC”

GROMACS Performance

(DPPC in Water)

Platform MPI
48 Cores/Node

Higher is better
GROMACS Performance – Processes Per Node

- Allocating more processes per node can yield higher system utilization
 - Seen 33% in performance gain by running with 48 PPN versus 24 PPN at 11-node
- Using 48 PPN achieves the same performance as using 24 PPN
 - GROMACS can fully utilized all CPU cores available in a system
 - GROMACS can benefit by reducing hardware footprint with high core-count CPUs
- No loss in performance by spreading the workload to more nodes
 - Only InfiniBand allows lossless performance by spreading the workload over the network

Higher is better

![GROMACS Performance Graph](image)
• ACML and MKL deliver a slightly better performance than fftpack
 – ACML and MKL are 1-2% better performance than fftpack
GROMACS Profiling – MPI/User Time Ratio

- InfiniBand QDR reduces the amount of time for MPI communications
 - 1GigE becomes efficient to handle the MPI communications after 2-node
 - 10GigE has a percentage of communications than InfiniBand QDR
GROMACS Profiling – MPI/User Run Time

- Communication time for InfiniBand stays flat as cluster grows
 - MPI run times for InfiniBand remains constant as the node number increases
 - MPI run times for 10GigE and 1GigE increase as the node number increases

![GROMACS Profiling (DPPC in Water, 1GigE) MPI/User Run Time](chart1)

![GROMACS Profiling (DPPC in Water, 10GigE) MPI/User Run Time](chart2)

![GROMACS Profiling (DPPC in Water, InfiniBand QDR) MPI/User Run Time](chart3)

48 Cores/Node
GROMACS Profiling – Number of MPI Calls

- The most used MPI functions are for data transfers
 - MPI_Send
 - MPI_Sendrecv
 - MPI_Isend
 - Reflects that GROMACS requires good network throughput
- The number of calls increases proportionally as the cluster scales
The time in communications is taken place in the following MPI functions:

- InfiniBand: MPI_Init (56%) MPI_Bcast (14%), MPI_Sendrecv (13%)
- 10GigE: MPI_Sendrecv (31%), MPI_Init (18%), MPI_Waitall (16%), MPI_Send (15%)
GROMACS Profiling – MPI Message Sizes

- Majority of the MPI messages are small to median message sizes
 - In the ranges of between 257B and 1KB
 - All of the MPI messages are in the sizes less than 256KB
- Low network latency requires for good small MPI message performance
GROMACS Profiling – Data Transfer By Process

• Data transferred to each MPI rank is generated constant for all MPI processes
 – Amount of data transfer to each rank is reduced as more nodes are in the job
 – From around 650MB per rank on 1-node down to around 300MB per rank for 8-node
• **Aggregated data transfer refers to:**
 – Total amount of data being transferred in the network between all MPI ranks collectively

• **The total data transfer increases steadily as the cluster scales**
 – For this dataset, a good amount of data being sent and received across the network
 – As a compute node being added, more data communications will take place
Summary

- **GROMACS is a compute and network sensitive application**
 - GROMACS has a high demand for CPU utilization and network interconnect performance

- **CPU:**
 - Higher CPU core frequency allows GROMACS to achieve higher performance
 - GROMACS can benefit by using high core-count CPUs, thus reducing hardware footprint

- **Interconnects:**
 - InfiniBand QDR can deliver good scalability for GROMACS
 - 10GigE and 1GigE would not scale and become inefficient to run beyond 2-3 nodes

- **Math Libraries:**
 - ACML and MKL has a slight advantage over fftpack

- **Compilers:**
 - GNU compilers shows higher CPU performance than PGI compilers
Thank You

HPC Advisory Council