GROMACS
Performance Benchmark and Profiling

September 2012
The following research was performed under the HPC Advisory Council activities

- Participating vendors: AMD, Dell, Mellanox
- Compute resource –
 - HPC Advisory Council Cluster Center

For more info please refer to

- http://www.amd.com
- http://www.dell.com/hpc
- http://www.mellanox.com
- http://www.gromacs.org
GROMACS

• **GROMACS (GROningen MAchine for Chemical Simulation)**
 – A molecular dynamics simulation package
 – Primarily designed for biochemical molecules like proteins, lipids and nucleic acids
 • A lot of algorithmic optimizations have been introduced in the code
 • Extremely fast at calculating the nonbonded interactions
 – Ongoing development to extend GROMACS with interfaces both to Quantum Chemistry and Bioinformatics/databases
 – An open source software released under the GPL
Objectives

• The following was done to provide best practices
 – GROMACS performance benchmarking
 – Understanding GROMACS communication patterns
 – Ways to increase GROMACS productivity
 – Compilers and network interconnects comparisons

• The presented results will demonstrate
 – The scalability of the compute environment
 – The capability of GROMACS to achieve scalable productivity
 – Considerations for performance optimizations
Test Cluster Configuration

- **Dell™ PowerEdge™ C6145 6-node (384-core) cluster**
 - Memory: 128GB memory per node DDR3 1600MHz, BIOS version 2.6.0
 - 4 CPU sockets per server node

- **AMD™ Opteron™ 6276 (code name “Interlagos”) 16-core @ 2.3 GHz CPUs**

- **Mellanox ConnectX®-3 VPI Adapters and IS5030 36-Port InfiniBand switch**

- **MLNX-OFED 1.5.3 InfiniBand SW stack**

- **OS: RHEL 6 Update 2, SLES 11 SP2**

- **MPI: Intel MPI 4 Update 3, Open MPI 1.5.5, Platform MPI 8.2.1**

- **Compilers: GNU 4.7**

- **Application: GROMACS 4.5.5**

- **Benchmark workload:**
 - DPPC in Water (d.dppc) (5000 steps, 10.0 ps.)
Dell™ PowerEdge™ C6145 6-node cluster

- **HPC Advisory Council Test-bed System**

- **New 6-node 384 core cluster - featuring Dell PowerEdge™ C6145 servers**
 - Replacement system for Dell PowerEdge SC1435 (192 cores) cluster system following 2 years of rigorous benchmarking and product EOL
 - System to be redirected to explore HPC in the Cloud applications

- **Workload profiling and benchmarking**
 - Characterization for HPC and compute intense environments
 - Optimization for scale, sizing and configuration and workload performance
 - Test-bed Benchmarks
 - RFPs
 - Customers/Prospects, etc
 - ISV & Industry standard application characterization
 - Best practices & usage analysis
About Dell PowerEdge™ Platform Advantages

Best of breed technologies and partners

Combination of AMD Opteron™ 6200 series platform and Mellanox ConnectX®-3 InfiniBand on Dell HPC

Solutions provide the ultimate platform for speed and scale
- Dell PowerEdge C6145 system delivers 8 socket performance in dense 2U form factor
- Up to 64 core/32DIMMs per server – 2688 core in 42U enclosure

Integrated stacks designed to deliver the best price/performance/watt
- 2x more memory and processing power in half of the space
- Energy optimized low flow fans, improved power supplies and dual SD modules

Optimized for long-term capital and operating investment protection
- System expansion
- Component upgrades and feature releases
GROMACS Performance – Interconnect

- **InfiniBand QDR delivers the best performance for GROMACS**
 - Seen up to 152% better performance than 10GbE on 6 nodes
 - Seen up to 59% better performance than 1GbE on 2 nodes

- **Scalability limitation seen with Ethernet networks**
 - 10GigE performance starts to drop after 3-node
 - 1GigE performance drop takes place after 2-node

![GROMACS Performance (DPPC in Water)](chart.png)

Higher is better
• Intel MPI delivers better scalability for GROMACS
 – 12% higher performance than Open MPI at 6 nodes
 – 4% higher performance than Platform MPI at 6 nodes
GROMACS Performance – Processes Per Node

• Allocating more processes per node can yield higher system utilization
 – 59% gain in performance with 4P servers versus 2P servers when comparing at 6 nodes

• Using 64 PPN delivers higher performance than 32PPN using 1 active core
 – 26% gain in performance with 64 PPN versus 32 PPN (with 1 active core) for 6 nodes
 – GROMACS can fully utilize all CPU cores available in a system

GROMACS Performance
(DPPC in Water)

Higher is better
Both SLES11SP2 and RHEL 6.2 perform at the same level of performance:
- SLES performs slightly better on a single node while RHEL performs better at scale.
GROMACS Profiling – MPI/User Time Ratio

- **InfiniBand QDR reduces the amount of time for MPI communications**
 - MPI Communication time stays flat as the compute time reduces
The most used MPI functions are for data transfers:
- MPI_Sendrecv (35%), MPI_Isend (23%), MPI_Irecv (23%), MPI_Waitall (14%)
- Reflects that GROMACS requires good network throughput

The number of calls increases proportionally as the cluster scales.

GROMACS Profiling – Number of MPI Calls

GROMACS Profiling (DPPC in Water)
Number of MPI Calls

Number of MPI Calls (Millions)

MPI Functions

1 Node 2 Nodes 3 Nodes 4 Nodes 5 Nodes 6 Nodes
The time in communications is taken place in the following MPI functions:

- MPI_Sendrecv (54%)
- MPI_Waitall (28%)
- MPI_Bcast (12%)
• Majority of the MPI messages are small to median message sizes
 – In the ranges of between 257B and 1KB
 – All of the MPI messages are in the sizes less than 256KB
• Low network latency requires for good small MPI message performance
GROMACS Profiling – MPI Message Sizes

- Large concentration of MPI calls are small to median message sizes
 - MPI_Irecv: In the ranges of between 257B and 1KB

![Graph showing MPI message sizes for 6 Nodes - 384 Processes]
- Data transferred to each MPI rank is generate constant for all MPI processes
 - Amount of data transfer to each rank is reduced as more nodes are in the job
 - From around 600MB per rank on 1-node down to around 300MB per rank for 6-node
Aggregated data transfer refers to:
- Total amount of data being transferred in the network between all MPI ranks collectively

The total data transfer increases steadily as the cluster scales
- For this dataset, a good amount of data being sent and received across the network
- As a compute node being added, more data communications will take place

GROMACS Profiling
(DDPC in Water)
Aggregated Data Transferred

![Bar chart showing data transferred vs number of nodes]

- **1 Node**
- **2 Nodes**
- **3 Nodes**
- **4 Nodes**
- **5 Nodes**
- **6 Nodes**
The point to point data flow shows the communication pattern of GROMACS
- GROMACS mainly communicates mainly its neighbors and close ranks
- The pattern stays the same as the cluster scales
Summary

- **GROMACS** is a memory and network latency sensitive application

- **CPU:**
 - Using 4P systems delivers 59% higher performance than 2P systems (at 6 nodes)
 - Using 64 PPN delivers 26% higher performance than 32PPN using 1 active core

- **Interconnects:**
 - InfiniBand QDR can deliver good scalability for GROMACS
 - Provides up to 142% better performance than 10GbE on 6 nodes
 - Provides up to 52% better performance than 1GbE on 2 nodes
 - 10GigE and 1GigE would not scale and become inefficient to run beyond 2-3 nodes

- **MPI:**
 - Intel MPI achieves higher scalability than Open MPI and Platform MPI for GROMACS

- **OS:**
 - Both SLES 11 SP 2 and RHEL 6 Update 2 provides similar level of performance
Thank You

HPC Advisory Council