HPCG
Performance Benchmark and Profiling
July 2014
• The following research was performed under the HPC Advisory Council activities
 – Participating vendors: HP, Mellanox

• For more information on the supporting vendors solutions please refer to:

• For more information on the application:
 – https://software.sandia.gov/hpcg
Objectives

- **The presented research was done to provide best practices**
 - HPCG performance benchmarking
 - Interconnect performance comparisons
 - MPI performance comparison
 - Understanding HPCG communication patterns

- **The presented results will demonstrate**
 - The scalability of the compute environment to provide nearly linear application scalability
• **HPCG Benchmark project**
 - An effort to create a more relevant metric for ranking HPC systems
 - Potential replacement for the High Performance LINPACK (HPL) benchmark
 - Currently HPL is used by the TOP500 benchmark

• **HPCG**
 - **High** **Performance** **Conjugate** **Gradient**
 - Stand-alone code that measures the performance of basic operations
 - Sparse matrix-vector multiplication
 - Sparse triangular solve
 - Vector updates
 - Global dot products
 - Local symmetric Gauss-Seidel smoother
 - Driven by multigrid preconditioned CG algorithm that exercises the key kernels on a nested set of coarse grids
 - Reference implementation is written in C++ with MPI and OpenMP support
Test Cluster Configuration

- **HP ProLiant SL230s Gen8 4-node “Athena” cluster**
 - Processors: Dual-Socket 10-core Intel Xeon E5-2680v2 @ 2.8 GHz CPUs
 - Memory: 32GB per node, 1600MHz DDR3 Dual-Ranked DIMMs
 - OS: RHEL 6 Update 2, OFED 2.2-1.0.1 InfiniBand SW stack

- **Mellanox Connect-IB FDR InfiniBand adapters**
- **Mellanox ConnectX-3 VPI Ethernet adapters**
- **Mellanox SwitchX SX6036 56Gb/s FDR InfiniBand and Ethernet VPI Switch**
- **MPI: Mellanox HPC-X v1.0.0, Platform MPI 9.1.2**
- **Compiler: Composer XE 2013 SP1**
- **Application: HPCG 2.4**
- **Benchmark Workload:**
 - Local domain dimensions 16x16x16, Runtime for 60 seconds unless otherwise stated
About HP ProLiant SL230s Gen8

<table>
<thead>
<tr>
<th>Item</th>
<th>HP ProLiant SL230s Gen8 Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Two Intel® Xeon® E5-2600 v2 Series, 4/6/8/10/12 Cores,</td>
</tr>
<tr>
<td>Chipset</td>
<td>Intel® Xeon E5-2600 v2 product family</td>
</tr>
<tr>
<td>Memory</td>
<td>(256 GB), 16 DIMM slots, DDR3 up to 1600MHz, ECC</td>
</tr>
<tr>
<td>Max Memory</td>
<td>256 GB</td>
</tr>
<tr>
<td>Internal Storage</td>
<td>Two LFF non-hot plug SAS, SATA bays or Four SFF non-hot plug SAS, SATA, SSD bays Two Hot Plug SFF Drives (Option)</td>
</tr>
<tr>
<td>Max Internal Storage</td>
<td>8TB</td>
</tr>
<tr>
<td>Networking</td>
<td>Dual port 1GbE NIC/ Single 10G Nic</td>
</tr>
<tr>
<td>I/O Slots</td>
<td>One PCIe Gen3 x16 LP slot 1Gb and 10Gb Ethernet, IB, and FlexF abric options</td>
</tr>
<tr>
<td>Ports</td>
<td>Front: (1) Management, (2) 1GbE, (1) Serial, (1) S.U.V port, (2) PCIe, and Internal Micro SD card & Active Health</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>750, 1200W (92% or 94%), high power chassis</td>
</tr>
<tr>
<td>Integrated Management</td>
<td>iLO4</td>
</tr>
<tr>
<td></td>
<td>hardware-based power capping via SL Advanced Power Manager</td>
</tr>
<tr>
<td>Additional Features</td>
<td>Shared Power & Cooling and up to 8 nodes per 4U chassis, single GPU support, Fusion I/O support</td>
</tr>
<tr>
<td>Form Factor</td>
<td>16P/8GPUs/4U chassis</td>
</tr>
</tbody>
</table>
HPCG Performance – Domain Dimensions

- **Adjusting local domain dimensions can affect global problem size**
 - User specifies local domain in hpcg.dat which predicts problem size
- **Higher performance is observed when small problem is specified**
 - Advantageous to tune the local dimension to a lower number
 - Values under 16 will be defaulted to 16 (for a 16x16x16 mesh)
 - Up to 135% higher performance against using the default (104x104x104)

HPCG Performance
(nx=ny=nz)

- **Higher is better**

![Graph showing performance comparison with different number of processes and domain sizes](chart.png)

FDR InfiniBand
HPCG Performance – Network

- **FDR InfiniBand delivers higher performance against Ethernet**
 - Over 5 times against 1GbE, and 4.5 times over 10GbE
 - Scalability advantage can be seen beyond a single node for HPCG

HPCG Performance
(16x16x16)

- Higher is better
No advantage is observed by running at a longer duration
- Although official results require the execution time to be \(\geq 3600 \) seconds
- Duration of the run does not appear to be a factor in the performance at all

Higher is better
• Little advantage is observed by tuning the CXXFLAGS option
 – Small increase (~2%) of increased performance is seen
 – Default: -O3
 – Tuned: -O3 -unroll-aggressive -no-prec-div -ipo -xHost -axavx

HPCG Performance
(16x16x16)

Higher is better

FDR InfiniBand
• **Athena cluster outperforms prior generation cluster**
 – Up to 234% higher performance than the Plutus cluster
 –Executable for Athena is compiled with AVX while Plutus is with SSE4.2

• **System components used:**
 – Athena: Dual 10-core E5-2680v2@2.8GHz, 1600MHz DIMMs, FDR IB
 – Plutus: Dual 6-core x5670@2.93GHz, 1333MHz DIMMs, QDR IB

HPCG Performance
(16x16x16)

Higher is better

Tuned Compiler
HPCG Performance – MPI

- Both MPI implementations show comparable performance
 - Reflect that both MPIs handle MPI calls used in HPCG efficiently
 - Limited variety of calls and different message sizes were made in profiling

HPCG Performance
(16x16x16)

Higher is better

Intel E5-2680v2
HPCG Profiling – Time Spent by MPI Calls

- Majority of the MPI time is spent on MPI_send and MPI_Allreduce
 - MPI_Wait (~49%), MPI_Allreduce (~24%), MPI_Send (~20%)
 - Some load imbalances are seen
 - About 28% of time spent in MPI communications at 4 nodes (80 processes)
HPCG Profiling – MPI Calls

- Little variety of MPI calls with limited message sizes were made
 - Calls are concentrated at these 7 sizes:
 - 0B, 8B, 16B, 32B, 64B, 128B, 512B, 2KB
- All messages are seen at these quantized sizes
Data transfers between MPI processes the mixed
- Up to 521MB between ranks are seen
• The memory usage shown the memory consumption by the compute node
 – Using the 16x16x16 of input data size, about 1GB of memory is being used by each node
HPCG – Summary

Performance
- Higher performance can be seen by tuning the input value
 - The 16x16x16 mesh yields ~135% higher performance than the default mesh
- FDR InfiniBand delivers superior scalability in application performance
 - Outperformed 1GbE and 10GbE by over 5 times and 4.5 times, respectively
- Athena (based on Intel Xeon E5-2680v2) and FDR IB enable HPCG to scale
 - Up to 234% over the Plutus cluster based on Intel Xeon X5670 (Westmere)
- Tuning compiler with AVX instructions set shows little gain over the default
- No difference between different MPI implementation
 - Reflect that the 2 MPI implementations handle the MPI calls used in HPCG efficiently
- No difference in performance by adjusting the runtime duration

Profiling
- Limited variety of MPI calls and different message sizes were seen
 - MPI calls are MPI_Allreduce, and MPI_Send at certain quantized sizes
Thank You

HPC Advisory Council