HYCOM Performance Benchmark and Profiling

Jan 2010

Acknowledgment:
- The DoD High Performance Computing Modernization Program
• The following research was performed under the HPC Advisory Council activities
 – Participating vendors: HP, Mellanox
 – Compute resource - HPC Advisory Council Cluster Center

• We would like to acknowledge
 – The DoD High Performance Computing Modernization Program for providing access to the FY 2009 benchmark suite

• For more info please refer to
HYCOM (HYbridCoordinateOceanModel)

- A primitive equation ocean general circulation model
 - Evolved from the Miami Isopycnic-Coordinate Ocean Model

- HYCOM provides the capability of selecting several different vertical mixing schemes for
 - The surface mixed layer
 - The comparatively weak interior diapycnal mixing

- HYCOM is fully parallelized

- Open source and joined developed by:
 - University of Miami, the Los Alamos National Laboratory, and the Naval Research Laboratory physics
Objectives

- **The presented research was done to provide best practices**
 - HYCOM performance benchmarking
 - Interconnect performance comparisons
 - File system performance comparisons
 - MPI libraries performance comparisons
 - Understanding HYCOM communication patterns
- **The presented results will demonstrate**
 - The scalability of the compute environment
 - Considerations for power saving through balanced system configuration
Test Clusters Configuration

- **HP ProLiant SL170z G6 16-node cluster**
 - Six-Core Intel X5670 @ 2.93 GHz CPUs
 - Memory: 24GB per node
 - OS: CentOS5U4, OFED 1.5.2 InfiniBand SW stack

- **Intel Cluster Ready certified cluster**

- **Mellanox ConnectX2 InfiniBand adapters and switches**

- **MPI**: OpenMPI-1.4.2, MVAPICH2-1.5.1, Intel MPI 4.0, Platform MPI 8.0

- **Application**: HYCOM 2.2.10

- **Benchmark Workload**
 - HYCOM standard benchmark dataset
 - 26-layer 1/4 degree fully global HYCOM benchmark
HP ProLiant SL6000 Scalable System

- Solution-optimized for extreme scale out

- Save on cost and energy -- per node, rack and data center

- Mix and match configurations

- Deploy with confidence

ProLiant SL160z G6
Large memory
-memory-cache apps

ProLiant SL165z G7

ProLiant SL170z G6
Large storage
-Web search and database apps

ProLiant SL2x170z G6
Highly dense
- HPC compute and web front-end apps

ProLiant z6000 chassis
Shared infrastructure
- fans, chassis, power

* SPECpower_ssj2008
www.spec.org
17 June 2010, 13:28

#1 Power Efficiency*
• Lustre over InfiniBand enables better application performance and scalability
 – Up to 10% faster than NFS
 – Advantage increases as cluster scales
HYCOM Benchmark Results – Interconnects

- **InfiniBand enables better application performance and scalability**
 - Up to 226% higher performance than GigE
 - 15% higher performance than 10GigE at 96 cores
 - 5% higher than 10GigE at 47 cores
 - Performance gap increases as core count grows
 - Application performance over InfiniBand scales as cluster size increases

![HYCOM Performance Graph](image_url)
HYCOM Benchmark Results – MPI Libraries

- All MPIs show similar performance and scalability over InfiniBand
 - MVAPICH2 is slightly better than others
HYCOM Profiling – MPI Overhead

- **MPI_Allreduce, MPI_Waitall are major functions**
 - MPI_Waitall generates largest overhead
 - Allreduce overhead grows faster than other functions as cluster size increases

![Pie charts showing MPI overhead for 47, 96, and 124 processes.](chart.png)
HYCOM Profiling – MPI Message Size

- Majority MPI_Waitall messages are large size
 - >64KB
- MPI_Allreduce messages are small size

47 Processes

124 Processes
HYCOM Profiling Summary

• HYCOM was profiled to identify its communication patterns

• MPI_Waitall and MPI_Allreduce generate most overhead
 – Majority MPI_waitall messages are large size
 – MPI_allreduce messages are small size

• Interconnect bandwidth is important for HYCOM performance
 – As cluster scales, percentage of small messages increases
 • Hence interconnect latency becomes crucial too
Thank You
HPC Advisory Council