LAMMPS Performance Benchmark and Profiling

September 2010
• The following research was performed under the HPC Advisory Council activities

• For more info please refer to
 – http://www.dell.com
 – http://www.intel.com
 – http://www.mellanox.com
• **Large-scale Atomic/Molecular Massively Parallel Simulator**
 - Classical molecular dynamics code which can model:
 • Atomic
 • Polymeric
 • Biological
 • Metallic
 • Granular, and coarse-grained systems

• **LAMMPS runs efficiently in parallel using message-passing techniques**
 - Developed at Sandia National Laboratories
 - An open-source code, distributed under GNU Public License
Objectives

• The following was done to provide best practices
 – LAMMPS performance benchmarking
 – Interconnect performance comparisons
 – Understanding LAMMPS communication patterns
 – Power-efficient simulations

• The presented results will demonstrate
 – The scalability of the compute environment to provide nearly linear application scalability
 – The capability of LAMMPS to achieve scalable productivity
 – Considerations for power saving through balanced system configuration
Test Cluster Configuration

• **Dell™ PowerEdge™ M610 14-node cluster**
 - Six-Core Intel X5670 @ 2.93 GHz CPUs
 - Memory: 24GB per node
 - OS: CentOS5U4, OFED 1.5.1 InfiniBand SW stack

• **Mellanox ConnectX-2 InfiniBand adapters and switches**

• **MPI:** Intel MPI 4, MVAPICH2 1.5, Open MPI 1.4.2, Platform MPI 7.1

• **Compilers** Intel Compilers 11.1, GNU 4.1.2

• **Libraries:** Intel MKL 10.2.4.032, fftw-2.1.5

• **Application:** LAMMPS-30Aug10

• **Benchmark Workload**
 - Rhodo - Rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ cutoff
LAMMPS Performance Result – Interconnect

- **InfiniBand enables higher scalability**
 - Up to 193% higher performance than Ethernet at 14 nodes
 - Four InfiniBand connected servers deliver nearly the same performance vs 14 Ethernet connected servers

LAMMPS Benchmark
(Scaled-size Rhodopsin Protein)

- **Performance Rating** = 32,000 atoms x the number of cores divided by the wall-clock simulation time

Higher is better

Number of Nodes

1. GigE
2. InfiniBand QDR

12 Cores/Node
LAMMPS Performance Result - Scalability

- InfiniBand enables higher scalability – more than 85% at 14 nodes
- Less than 30% of the system compute capability can be utilized with Ethernet at 14 nodes

LAMMPS Benchmark
(Scaled-size Rhodopsin Protein)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GigE: 100</td>
</tr>
<tr>
<td>2</td>
<td>GigE: 80</td>
</tr>
<tr>
<td>4</td>
<td>GigE: 60</td>
</tr>
<tr>
<td>8</td>
<td>GigE: 40</td>
</tr>
<tr>
<td>14</td>
<td>InfiniBand QDR:80</td>
</tr>
</tbody>
</table>

Higher is better

12 Cores/Node
LAMMPS Performance Result – Compilers and Libraries (Single node)

- Intel Compilers and MKL libraries provides higher performance versus GNU compilers and FFTW libraries
 - ~41% higher per process basis
 - ~46% higher per node basis

Higher is better
Intel Compilers enables 25% higher performance than GNU Compilers and FFTW library.
Intel MPI and Platform MPI demonstrate better performance
- Used with Intel compilers and MKL libraries together to deliver the highest performance
- 9% gain compared to Open MPI at 14-node
• Running 2 jobs concurrently can provide slightly higher productivity
 – 2 jobs setup: 6 cores/node per job; 1 job setup: 12 cores/node
 – Up to 6% higher performance when 2 jobs running concurrently

LAMMPS Benchmark
(Scaled-size Rhodopsin Protein)
LAMMPS Profiling Result – # of MPI Calls

- MPI_Send, MPI_Allreduce and MPI_Waitany the mostly used calls

LAMMPS Profiling
(Scaled-size Rhodopsin Protein)

Number of Nodes

- 1 Node
- 2 Nodes
- 4 Nodes
- 8 Nodes
- 14 Nodes

Higher is better

12 Cores/Node
LAMMPS Profiling Result – % Time of MPI Calls

- Majority of communication time is spent on MPI_Send and MPI_Allreduce
 - Percentage time is relatively consistent as number of nodes increases
LAMMPS Profiling Result – # of Message/Sizes

- Majority of messages are small and medium messages
 - Messages around 64B and 64KB are mostly used
- Number of messages increases dramatically with the number of nodes

![LAMMPS Profiling Graph](Scaled-size Rhodopsin Protein)
Summary

- Interconnects effect to LAMMPS performance
 - InfiniBand enables higher performance/scalability
 - Ethernet provides only 30% scalability at 14 nodes

- Intel Compilers and MKL Libraries can increase single-node performance by 46%

- Running multiple jobs per day, can increase LAMMPS productivity by 6%

- MPI_Send, MPI_Allreduce and MPI_Waitany mostly used MPI calls

- Majority of communication time is spent on MPI_Send and MPI_Allreduce

- Message with sizes around 64B and 64KB mostly used
Thank You
HPC Advisory Council

All trademarks are property of their respective owners. All information is provided “As-Is” without any kind of warranty. The HPC Advisory Council makes no representation to the accuracy and completeness of the information contained herein. HPC Advisory Council Mellanox undertakes no duty and assumes no obligation to update or correct any information presented herein.