LS-DYNA Performance Benchmarks and Profiling

January 2009
Note

- The following research was performed under the HPC Advisory Council activities
 - AMD, Dell, Mellanox
 - HPC Advisory Council Cluster Center
- The participating members would like to thank LSTC for their support and guidelines
- The participating members would like to thank Sharan Kalwani, HPC Automotive specialist, for his support and guidelines
- For more info please refer to
LS-DYNA

- **LS-DYNA**
 - A general purpose structural and fluid analysis simulation software package capable of simulating complex real world problems
 - Developed by the Livermore Software Technology Corporation (LSTC)

- **LS-DYNA used by**
 - Automobile
 - Aerospace
 - Construction
 - Military
 - Manufacturing
 - Bioengineering
• **LS-DYNA SMP (Shared Memory Processing)**
 – Optimize the power of multiple CPUs within single machine

• **LS-DYNA MPP (Massively Parallel Processing)**
 – The MPP version of LS-DYNA allows to run LS-DYNA solver over High-performance computing cluster
 – Uses message passing (MPI) to obtain parallelism

• **Many companies are switching from SMP to MPP**
 – For cost-effective scaling and performance
Objectives

• The presented research was done to provide best practices
 – LS-DYNA performance benchmarking
 – Interconnect performance comparisons
 – Ways to increase LS-DYNA productivity
 – Understanding LS-DYNA communication pattern
 – MPI libraries comparisons
 – Power-aware consideration
Test Cluster Configuration

- Dell™ PowerEdge™ SC 1435 24-node cluster
- Quad-Core AMD Opteron™ Model 2358 processors ("Barcelona")
- Mellanox® InfiniBand ConnectX® DDR HCAs
- Mellanox® InfiniBand DDR Switch
- Memory: 16GB memory, DDR2 667MHz per node
- OS: RHEL5U2, OFED 1.3 InfiniBand SW stack
- MPI: HP MPI 2.2.7, Platform MPI 5.6.5
- Application: LS-DYNA MPP971
- Benchmark Workload
 - Three Vehicle Collision Test simulation
 - Neon-Refined Revised Crash Test simulation
Mellanox InfiniBand Solutions

- **Industry Standard**
 - Hardware, software, cabling, management
 - Design for clustering and storage interconnect

- **Performance**
 - 40Gb/s node-to-node
 - 120Gb/s switch-to-switch
 - 1us application latency
 - Most aggressive roadmap in the industry

- **Reliable with congestion management**

- **Efficient**
 - RDMA and Transport Offload
 - Kernel bypass
 - CPU focuses on application processing

- **Scalable for Petascale computing & beyond**

- **End-to-end quality of service**

- **Virtualization acceleration**

- **I/O consolidation Including storage**

The InfiniBand Performance Gap is Increasing

InfiniBand Delivers the Lowest Latency
Quad-Core AMD Opteron™ Processor

- **Performance**
 - Quad-Core
 - Enhanced CPU IPC
 - 4x 512K L2 cache
 - 2MB L3 Cache
 - Direct Connect Architecture
 - HyperTransport™ technology
 - Up to 24 GB/s
 - Floating Point
 - 128-bit FPU per core
 - 4 FLOPS/clk peak per core
 - Memory
 - 1GB Page Support
 - DDR-2 667 MHz
- **Scalability**
 - 48-bit Physical Addressing
- **Compatibility**
 - Same power/thermal envelopes as Second-Generation AMD Opteron™ processor
Dell PowerEdge Servers helping Simplify IT

- **System Structure and Sizing Guidelines**
 - 24-node cluster build with Dell PowerEdge™ SC 1435 Servers
 - Servers optimized for High Performance Computing environments
 - Building Block Foundations for best price/performance and performance/watt

- **Dell HPC Solutions**
 - Scalable Architectures for High Performance and Productivity
 - Dell's comprehensive HPC services help manage the lifecycle requirements.
 - Integrated, Tested and Validated Architectures

- **Workload Modeling**
 - Optimized System Size, Configuration and Workloads
 - Test-bed Benchmarks
 - ISV Applications Characterization
 - Best Practices & Usage Analysis
LS-DYNA Performance Results - Interconnect

- **InfiniBand high speed interconnect enables highest scalability**
 - Performance gain with cluster size
- **Performance over GigE is not scaling**
 - Slowdown occurs as number of processors increases beyond 16 nodes

![Graphs showing performance comparison between InfiniBand and GigE for LS-DYNA applications.](image-url)

Lower is better
InfiniBand outperforms GigE by up to 132%
– As node number increases, bigger advantage is expected
CPU affinity accelerates performance up to 10%
Saves up to 177 seconds per simulation

Lower is better
InfiniBand increases productivity by allowing multiple jobs to run simultaneously
- Providing required productivity for virtual vehicle design

Three cases are presented
- Single job over the entire systems (with CPU affinity)
- Two jobs, each on a single CPU per server (job placement, CPU affinity)
- Four jobs, each on two CPU cores per CPU per server (job placement, CPU affinity)

Four jobs per day increases productivity by 97% for Neon Refined Revised, 57% for 3 Car collision case

Increased number of parallel processes (jobs) increases the load on the interconnect
- High speed and low latency interconnect solution is required for gaining high productivity

LS-DYNA - 3 Vehicle Collision

LS-DYNA - Neon Refined Revised

Higher is better
LS-DYNA Profiling – Data Transferred

LS-DYNA MPI Profiling
(3 Vehicle Collision)

- Majority of data transfer is done via 256B-4KB message size
LS-DYNA Profiling – Message Distribution

LS-DYNA MPI Profiling
(3 Vehicle Collision)

- Majority of the messages are in the range of 2B-4KB
 - 2B-256B for synchronization, 256B-4KB for data communications
LS-DYNA Profiling – Message Distribution

- As number of nodes scales, percentage of small messages increases
- Percentage of 256-1KB messages is relatively consistent with cluster size
 - Actual number increases with cluster size,
LS-DYNA Profiling – MPI Collectives

- Two key MPI collective functions in LS-DYNA
 - MPI_AllReduce
 - MPI_Bcast
- Account for the majority of MPI communication overhead

![Graph showing MPI Collectives](image-url)
MPI Collective Benchmarking

- **MPI collective performance comparison**
 - Two frequently called collection operations in LS-DYNA were benchmarked
 - MPI_Allreduce
 - MPI_Bcast
 - Platform MPI shows better latency for AllReduce operation
LS-DYNA with Different MPI Libraries

- **LS-DYNA performance Comparison**
 - Each MPI library shows different benefits for latency and collectives
 - As such, HP-MPI and Platform MPI shows comparable performance

LS-DYNA - 3 Vehicle Collision

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Elapsed time (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (32 Cores)</td>
<td>Platform MPI</td>
</tr>
<tr>
<td>6 (48 Cores)</td>
<td>7000</td>
</tr>
<tr>
<td>8 (64 Cores)</td>
<td>6000</td>
</tr>
<tr>
<td>10 (80 Cores)</td>
<td>5000</td>
</tr>
<tr>
<td>12 (96 Cores)</td>
<td>4000</td>
</tr>
<tr>
<td>14 (112 Cores)</td>
<td>3000</td>
</tr>
<tr>
<td>16 (128 Cores)</td>
<td>2000</td>
</tr>
<tr>
<td>18 (144 Cores)</td>
<td>1000</td>
</tr>
<tr>
<td>20 (160 Cores)</td>
<td>900</td>
</tr>
<tr>
<td>22 (176 Cores)</td>
<td>800</td>
</tr>
<tr>
<td>24 (192 Cores)</td>
<td>700</td>
</tr>
</tbody>
</table>

LS-DYNA - Neon Refined Revised

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Elapsed time (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (32 Cores)</td>
<td>Platform MPI</td>
</tr>
<tr>
<td>6 (48 Cores)</td>
<td>550</td>
</tr>
<tr>
<td>8 (64 Cores)</td>
<td>450</td>
</tr>
<tr>
<td>10 (80 Cores)</td>
<td>350</td>
</tr>
<tr>
<td>12 (96 Cores)</td>
<td>250</td>
</tr>
<tr>
<td>14 (112 Cores)</td>
<td>150</td>
</tr>
<tr>
<td>16 (128 Cores)</td>
<td>100</td>
</tr>
<tr>
<td>18 (144 Cores)</td>
<td>90</td>
</tr>
<tr>
<td>20 (160 Cores)</td>
<td>80</td>
</tr>
<tr>
<td>22 (176 Cores)</td>
<td>70</td>
</tr>
<tr>
<td>24 (192 Cores)</td>
<td>60</td>
</tr>
</tbody>
</table>

Lower is better
LS-DYNA Profiling Summary - Interconnect

- LS-DYNA was profiled to determine networking dependency
- Majority of data transferred between compute nodes
 - Done with 256B-4KB message size, data transferred increases with cluster size
- Most used message sizes
 - <64B messages – mainly synchronizations
 - 64B-4KB – mainly compute related
- Message size distribution
 - Percentage of smaller messages (<64B) increases with cluster size
 - Mainly due to the needed synchronization
 - Percentage of mid-size messages (64B-4KB) is kept the same with cluster size
 - Compute transactions increases with cluster size
 - Percentage of very large messages decreases with cluster size
 - Mainly used for problem data distribution at the simulation initialization phase
- LS-DYNA interconnect sensitivity points
 - Interconnect latency and throughput for 64B-4KB message range
 - Collectives operations performance, mainly MPI_Allreduce
Test Cluster Configuration – System Upgrade

- The following results were achieved after system upgrade (changes are in green)

 - Dell PowerEdge SC 1435 24-node cluster
 - Quad-Core AMD Opteron™ Model 2382 processors (“Shanghai”) (vs “Barcelona” in previous configuration)
 - Mellanox® InfiniBand ConnectX® DDR HCAs
 - Mellanox® InfiniBand DDR Switch
 - Memory: 16GB memory, DDR2 800MHz per node (vs 667MHz in previous configuration)
 - OS: RHEL5U2, OFED 1.3 InfiniBand SW stack
 - MPI: HP MPI 2.2.7, Platform MPI 5.6.5
 - Application: LS-DYNA MPP971
 - Benchmark Workload
 - Three-Car Crash Test simulation
 - Neon-Refined Revised Crash Test simulation
Quad-Core AMD Opteron™ Processor

- **Performance**
 - Quad-Core
 - Enhanced CPU IPC
 - 4x 512K L2 cache
 - 6MB L3 Cache
 - Direct Connect Architecture
 - HyperTransport™ technology
 - Up to 24 GB/s peak per processor
 - Floating Point
 - 128-bit FPU per core
 - 4 FLOPS/clk peak per core
 - Integrated Memory Controller
 - Up to 12.8 GB/s
 - DDR2-800 MHz or DDR2-667 MHz
- **Scalability**
 - 48-bit Physical Addressing
- **Compatibility**
 - Same power/thermal envelopes as 2nd / 3rd generation AMD Opteron™ processor
Performance Improvement

- Upgraded AMD CPU and DDR-2 Memory
- LS-DYNA run time decreased by more than 20%
 - Leveraging InfiniBand 20Gb/s for higher scalability

LS-DYNA - 3 Vehicle Collision

LS-DYNA - Neon Refined Revised

Lower is better
Maximize LS-DYNA Productivity

- Scalable latency of InfiniBand and latest Shanghai processor deliver scalable LS-DYNA performance

Higher is better
LS-DYNA with Shanghai Processors

- “Shanghai” processors provides higher performance compared to “Barcelona”

LS-DYNA - 3 Vehicle Collision
(Shanghai vs Barcelona)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>% of more jobs per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (32 Cores)</td>
<td>25%</td>
</tr>
<tr>
<td>8 (64 Cores)</td>
<td>20%</td>
</tr>
<tr>
<td>12 (96 Cores)</td>
<td>15%</td>
</tr>
<tr>
<td>16 (128 Cores)</td>
<td>10%</td>
</tr>
<tr>
<td>20 (160 Cores)</td>
<td>5%</td>
</tr>
<tr>
<td>24 (192 Cores)</td>
<td>0%</td>
</tr>
</tbody>
</table>

- 1 Job
- 2 Parallel Jobs
- 4 Parallel Jobs
LS-DYNA Performance Results - Interconnect

- InfiniBand 20Gb/s vs 10GigE vs GigE
- InfiniBand 20Gb/s (DDR) outperforms 10GigE and GigE in all test cases
 - Reducing run time by up to 60% versus 10GigE and 61% vs GigE
- Performance loss shown beyond 16 nodes with 10GigE and GigE
- InfiniBand 20Gb/s maintain scalability with cluster size

LS-DYNA - Neon Refined Revised (HP-MPI)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>GigE</th>
<th>10GigE</th>
<th>InfiniBand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (32 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 (64 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 (96 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 (128 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 (160 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 (192 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LS-DYNA - 3 Vehicle Collision (HP-MPI)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>GigE</th>
<th>10GigE</th>
<th>InfiniBand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (32 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 (64 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 (96 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 (128 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 (160 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 (192 Cores)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower is better
Power Consumption Comparison

- **InfiniBand** also enables power efficient simulations
 - Reducing power/job by up to 62%!

24-node comparison
Conclusions

• **LS-DYNA is widely used to simulate many real-world problems**
 – Automotive crash-testing and finite-element simulations
 – Developed by Livermore Software Technology Corporation (LSTC)

• **LS-DYNA performance and productivity relies on**
 – Scalable HPC systems and interconnect solutions
 – Low latency and high throughput interconnect technology
 – NUMA aware application for fast access to local memory
 – Reasonable job distribution can dramatically improve productivity
 • Increasing number of jobs per day while maintaining fast run time

• **Interconnect comparison shows**
 – InfiniBand delivers superior performance and productivity in every cluster size
 – Scalability requires low latency and “zero” scalable latency
 – Lowest power consumption was achieved with InfiniBand
 • Saving in system power, cooling and real-estate
Thank You
HPC Advisory Council
HPC@mellanox.com