LS-DYNA
Performance Benchmark and Profiling

April 2015
The following research was performed under the HPC Advisory Council activities

- Participating vendors: Intel, Dell, Mellanox
- Compute resource - HPC Advisory Council Cluster Center

The following was done to provide best practices

- LS-DYNA performance overview
- Understanding LS-DYNA communication patterns
- Ways to increase LS-DYNA productivity
- MPI libraries comparisons

For more info please refer to

- http://www.dell.com
- http://www.intel.com
- http://www.mellanox.com
- http://www.lstc.com
• **LS-DYNA**
 – A general purpose structural and fluid analysis simulation software package capable of simulating complex real world problems
 – Developed by the Livermore Software Technology Corporation (LSTC)

• **LS-DYNA used by**
 – Automobile
 – Aerospace
 – Construction
 – Military
 – Manufacturing
 – Bioengineering
Objectives

• The presented research was done to provide best practices
 – LS-DYNA performance benchmarking
 • MPI Library performance comparison
 • Interconnect performance comparison
 • CPUs comparison
 • Optimization tuning

• The presented results will demonstrate
 – The scalability of the compute environment/application
 – Considerations for higher productivity and efficiency
Test Cluster Configuration

- **Dell PowerEdge R730 32-node (896-core) “Thor” cluster**
 - Dual-Socket 14-Core Intel E5-2697v3 @ 2.60 GHz CPUs (Power Management in BIOS sets to Maximum Performance)
 - Memory: 64GB memory, DDR4 2133 MHz, Memory Snoop Mode in BIOS sets to Home Snoop
 - OS: RHEL 6.5, MLNX_OFED_LINUX-2.4-1.0.5.1_20150408_1555 InfiniBand SW stack
 - Hard Drives: 2x 1TB 7.2 RPM SATA 2.5” on RAID 1
- **Mellanox ConnectX-4 EDR 100Gb/s InfiniBand Adapters**
- **Mellanox Switch-IB SB7700 36-port EDR 100Gb/s InfiniBand Switch**
- **Mellanox ConnectX-3 FDR VPI InfiniBand and 40Gb/s Ethernet Adapters**
- **Mellanox SwitchX-2 SX6036 36-port 56Gb/s FDR InfiniBand / VPI Ethernet Switch**
- **MPI: Open MPI 1.8.4, Mellanox HPC-X v1.2.0-326, Intel MPI 5.0.2.044, IBM Platform MPI 9.1**
- **Application:**
 - LS-DYNA 8.0.0 (builds 95359, 95610), Single Precision
- **Benchmarks:** 3 Vehicle Collision, Neon refined revised
PowerEdge R730
Massive flexibility for data intensive operations

• **Performance and efficiency**
 – Intelligent hardware-driven systems management with extensive power management features
 – Innovative tools including automation for parts replacement and lifecycle manageability
 – Broad choice of networking technologies from GigE to IB
 – Built in redundancy with hot plug and swappable PSU, HDDs and fans

• **Benefits**
 – Designed for performance workloads
 • from big data analytics, distributed storage or distributed computing where local storage is key to classic HPC and large scale hosting environments
 • High performance scale-out compute and low cost dense storage in one package

• **Hardware Capabilities**
 – Flexible compute platform with dense storage capacity
 • 2S/2U server, 6 PCIe slots
 – Large memory footprint (Up to 768GB / 24 DIMMs)
 – High I/O performance and optional storage configurations
 • HDD options: 12 x 3.5" - or - 24 x 2.5 + 2x 2.5 HDDs in rear of server
 • Up to 26 HDDs with 2 hot plug drives in rear of server for boot or scratch
LS-DYNA Performance – Network Interconnects

- **EDR InfiniBand delivers superior scalability in application performance**
 - Provides higher performance by over 4-5 times than 1GbE, 10GbE and 40GbE
 - 1GbE stop scaling beyond 4 nodes, and 10GbE stops scaling beyond 8 nodes
 - InfiniBand demonstrates continuous performance gain at scale

LS-DYNA Performance
(neon_refined_revised)

\[
\begin{array}{c|c|c|c|c}
\text{Number of Nodes} & \text{1GE} & \text{10GE} & \text{40GE} & \text{EDR InfiniBand} \\
\hline
1 & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} \\
2 & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} \\
4 & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} \\
8 & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} \\
16 & \text{572%} & \text{505%} & \text{444%} & \text{Performance Rating} \\
32 & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} & \text{Performance Rating} \\
\end{array}
\]

Higher is better

28 MPI Processes / Node
LS-DYNA Performance – EDR vs FDR InfiniBand

- **EDR InfiniBand delivers superior scalability in application performance**
 - As the cluster scales, performance gap of EDR IB becomes wider
- **Performance advantage of EDR InfiniBand increases for larger core counts**
 - EDR IB provides 15% versus FDR IB at 32 nodes (896 cores)

Higher is better

28 MPI Processes / Node
• Better performance is seen at scale with less CPU cores per node
 – At low node counts, higher performance can be achieved with more cores per node
 – At high node counts, slightly better performance by using less cores per node
 – Memory bandwidth might be limited by more CPU cores being used

LS-DYNA Performance – Cores Per Node

Higher is better

CPU @ 2.6GHz
LS-DYNA Performance – AVX2/SSE2 CPU Instructions

- **LS-DYNA provides executables with supports for different CPU instructions**
 - AVX2 is supported on “Haswell” while SSE2 is supported on previous generations
 - Due to runtime issue, AVX2 executable build 95610 is used, instead of the public build 95359
 - Slight improvement of ~2-4% by using executable with AVX2 instructions
 - The AVX2 instructions runs at a lower clock speed (2.2GHz) than normal CPU clock (2.6GHz)

![LS-DYNA Performance Summary](image)

- **Higher is better**
- 24 MPI Processes / Node
• **Turbo Boost enables processors to run above its base frequency**
 – Capability to allow CPU cores to run dynamically above the CPU clock
 – When thermal headroom allows the CPU to operate
 – The 2.6GHz clock speed could boost to Max Turbo Frequency of 3.3GHz
 – Running with Turbo Boost translates to a ~25% of performance boost

LS-DYNA Performance – Turbo Mode

Higher is better

- **LS-DYNA Performance (neon_refined_revised)**
 - Performance Rating
 - Number of Nodes: 1, 2, 4, 8, 16, 32
 - Performance Rating: 0 to 2500
 - Turbo Off vs Turbo On

- **LS-DYNA Performance (3cars)**
 - Performance Rating
 - Number of Nodes: 1, 2, 4, 8, 16, 32
 - Performance Rating: 0 to 400
 - Turbo Off vs Turbo On

28 MPI Processes / Node
LS-DYNA Performance – Memory Optimization

- Setting the environment variables for memory allocator improve on performance
 - Modifying the memory allocator allows faster memory registration for communications
- Environment variables used:
 - export MALLOC_MMAP_MAX=0
 - export MALLOC_TRIM_THRESHOLD=-1

Higher is better

28 MPI Processes / Node
LS-DYNA Performance – MPI Optimization

- FCA and MXM enhance LS-DYNA performance at scale for HPC-X
 - Open MPI and HPC-X are based on the Open MPI distribution
 - The “yalla” PML, UD transport and memory optimization in HPC-X reduce overhead
 - MXM provides a speedup of 38% over un-tuned baseline run at 32 nodes (768 cores)

- MCA parameters for MXM:
 - For enabling MXM:
    ```
    -mca btl_sm use knem 1 -mca pml yalla -x MXM_TLS=ud,shm,self -x MXM_SHM_RNDV_THRESH=32768 -x MXM_RDMA_PORTS=mlx5_0:1
    ```

Higher is better

24 MPI Processes / Node
The DAPL provider performs better than OFA provider for Intel MPI
- DAPL would provide better scalability performance for Intel MPI on LS-DYNA

MCA parameters for MXM:
- Common for 2 tests: `I_MPI_DAPL_SCALABLE_PROGRESS 1`, `I_MPI_RDMA_TRANSLATION_CACHE 1`, `I_MPI_FAIR_CONN_SPIN_COUNT 2147483647`, `I_MPI_FAIR_READ_SPIN_COUNT 2147483647`, `I_MPI_ADJUST_REDUCE 2`, `I_MPI_ADJUST_BCAST 0`, `I_MPI_RDMA_TRANSLATION_CACHE 1`, `I_MPI_RDMA_RNDV_BUF_ALIGN 65536`, `I_MPI_SPIN_COUNT 121`
- For OFA: `-IB`, `MV2_USE_APM 0`, `I_MPI_OFA_USE_XRC 1`
- For DAPL: `-DAPL`, `I_MPI_DAPL_DIRECT_COPY_THRESHOLD 65536`, `I_MPI_DAPL_UD enable`, `I_MPI_DAPL_PROVIDER ofa-v2-mlx5_0-1u`

LS-DYNA Performance
(neon_refined_revised)

![Performance Graph]

Higher is better
• **HPC-X outperforms Platform MPI, and Open MPI in scalability performance**
 – HPC-X delivers higher performance than Intel MPI (OFA) by 33%, (DAPL) by 11%, Platform MPI by 27% on neon_refined_revised
 – Performance is 20% higher than Intel OFA, and % 8% better than Platform MPI in 3cars

• **Tuning parameter used:**
 – For Open MPI: -bind-to-core and KNEM. For Platform MPI: -cpu_bind, -xrc. For Intel MPI: see previous slide

LS-DYNA Performance – MPI Libraries

HPC-X outperforms Platform MPI, and Open MPI in scalability performance

- HPC-X delivers higher performance than Intel MPI (OFA) by 33%, (DAPL) by 11%, Platform MPI by 27% on neon_refined_revised
- Performance is 20% higher than Intel OFA, and % 8% better than Platform MPI in 3cars

Tuning parameter used:
- For Open MPI: -bind-to-core and KNEM. For Platform MPI: -cpu_bind, -xrc. For Intel MPI: see previous slide

LS-DYNA Performance (neon_refined_revised)

![Graph showing performance ratings for different numbers of nodes for HPC-X, Intel MPI-OFA, Intel MPI-DAPL, Platform MPI, and HPC-X. Higher is better.](image)

LS-DYNA Performance (3cars)

![Graph showing performance ratings for different numbers of nodes for Intel MPI-OFA, Platform MPI, and HPC-X. Higher is better.](image)
LS-DYNA Performance – System Generations

- **Current Haswell system configuration outperforms prior system generations**
 - Current systems outperformed Ivy Bridge by 47%, Sandy Bridge by 75%, Westmere by 148%, Nehalem by 290%
 - Scalability support from EDR InfiniBand and HPC-X provide huge boost in performance at scale for LS-DYNA

- **System components used:**
 - Haswell: 2-socket 14-core E5-2697v3@2.6GHz, 2133MHz DIMMs, ConnectX-4 EDR InfiniBand
 - Ivy Bridge: 2-socket 10-core E5-2680v2@2.8GHz, 1600MHz DIMMs, Connect-IB FDR InfiniBand
 - Sandy Bridge: 2-socket 8-core E5-2680@2.7GHz, 1600MHz DIMMs, ConnectX-3 FDR InfiniBand
 - Westmere: 2-socket 6-core x5670@2.93GHz, 1333MHz DIMMs, ConnectX-2 QDR InfiniBand
 - Nehalem: 2-socket 4-core x5570@2.93GHz, 1333MHz DIMMs, ConnectX-2 QDR InfiniBand

Higher is better
• Most of the MPI messages are in the medium sizes
 – Most message sizes are between 0 to 64B
• For the most time consuming MPI calls
 – MPI_Recv: Most messages are under 4KB
 – MPI_Bcast: Majority are less than 16B, but larger messages exist
 – MPI_Allreduce: Most messages are less than 256B
Majority of the MPI time is spent on MPI_recv and MPI Collective Ops
- MPI_Recv(36%), MPI_Allreduce(27%), MPI_Bcast(24%)
- Similar communication characteristics seen on both input dataset
 - Both exhibit similar communication patterns
LS-DYNA Summary

Performance

- Compute: Intel Haswell cluster outperforms system architecture of previous generations
 - Outperforms Ivy Bridge by 47%, Sandy Bridge by 75%, Westmere by 148%, and Nehalem by 290%
 - Using executable with AVX2 instructions provides slight advantage
 - Slight improvement of ~2-4% by using executable with AVX2 instructions
- Turbo Mode: Running with Turbo Boost provides ~25% of performance boost in some cases
 - Turbo Boost enables processors to run above its base frequency
- Network: EDR InfiniBand and HPC-X MPI library deliver superior scalability in application performance
 - EDR IB provides higher performance by over 4-5 times vs 1GbE, 10GbE and 40GbE, 15% vs FDR IB at 32 nodes

MPI Tuning

- HPC-X enhances LS-DYNA performance at scale for LS-DYNA
 - MXM UD provides a speedup of 38% over un-tuned baseline run at 32 nodes
- HPC-X outperforms Platform MPI, and Open MPI in scalability performance
 - Up to 27% better than Platform MPI on neon_refined_revised, and 8% better than Platform MPI in 3cars
Thank You

HPC Advisory Council

All trademarks are property of their respective owners. All information is provided “As-Is” without any kind of warranty. The HPC Advisory Council makes no representation to the accuracy and completeness of the information contained herein. HPC Advisory Council undertakes no duty and assumes no obligation to update or correct any information presented herein.