NEMO
Performance Benchmark and Profiling

May 2011
The following research was performed under the HPC Advisory Council HPC|works working group activities

- Participating vendors: HP, Intel, Mellanox
- Compute resource - HPC Advisory Council Cluster Center

For more info please refer to

- www.intel.com
- www.mellanox.com
- http://www.nemo-ocean.eu
NEMO (Nucleus for European Modelling of the Ocean)

- **NEMO is a state-of-the-art modeling framework for**
 - Oceanographic research
 - Operational oceanography seasonal forecast
 - Climate studies

- **NEMO includes 4 major components**
 - The blue ocean (ocean dynamics, NEMO-OPA)
 - The white ocean (sea-ice, NEMO-LIM)
 - The green ocean (biogeochemistry, NEMO-TOP)
 - The adaptative mesh refinement software (AGRIF)

- **NEMO is used by a large community**: 240 projects in 27 countries
 - Under the CeCILL license (public license) controlled by a European Consortium between CNRS, Mercator-Ocean, UKMO and NERC

- **NEMO is part of DEISA benchmark suite** (http://www.deisa.eu)
Objectives

• The presented research was done to provide best practices
 – File-system performance comparison
 – MPI libraries comparisons
 – Interconnect performance benchmarking
 – NEMO Application profiling
 – Understanding NEMO communication patterns

• The presented results will demonstrate
 – Balanced compute environment determines application performance
Test Cluster Configuration

- **HP ProLiant SL2x170z G6 16-node cluster**
 - Six-Core Intel X5670 @ 2.93 GHz CPUs
 - Memory: 24GB per node
 - OS: CentOS5U5, OFED 1.5.3 InfiniBand SW stack
- **Mellanox ConnectX-2 InfiniBand QDR adapters and switches**
- **Fulcrum based 10Gb/s Ethernet switch**
- **MPI**
 - Intel MPI 4, Open MPI 1.7, Platform MPI 8.0.1
- **Compilers: Intel Compilers 11.1.064**
- **Application: NEMO 3.2**
- **Libraries: Intel MKL 2011.3.174, netCDF 2.122**
- **Benchmark workload**
 - OPA (the ocean engine), confcoef=25
About HP ProLiant SL6000 Scalable System

• Solution-optimized for extreme scale out

- ProLiant SL160z G6
 - Large memory
 - memory-cache apps

- ProLiant SL165z G7
 - Large memory
 - Web search and database apps

- ProLiant SL170z G6
 - Large storage
 - Web search and database apps

- ProLiant SL2x170z G6
 - Highly dense
 - HPC compute and web front-end apps

Save on cost and energy -- per node, rack and data center

Mix and match configurations

Deploy with confidence

* SPECpower_ssj2008
 www.spec.org
 17 June 2010, 13:28
Lustre File System Configuration

- **Lustre Configuration**
 - 1 MDS
 - 4 OSS (Each has 2 OST)
 - InfiniBand based Backend storage
 - All components are connected through InfiniBand QDR interconnect
NEMO Benchmark Results – File System

- File I/O performance is important to NEMO performance
 - InfiniBand powered Lustre file system enables application scalability
 - NFS over GigE doesn’t meet application file I/O requirement

![NEMO Benchmark Graph]

Higher is better

Open MPI over InfiniBand QDR
12-cores per node
• Intel MPI with tuning runs 13% faster than default mode at 16 nodes
 • -genv I_MPI_RDMA_TRANSLATION_CACHE 1
 • -genv I_MPI_RDMA_RNDV_BUF_ALIGN 65536
 • -genv I_MPI_DAPL_DIRECT_COPY_THRESHOLD 65536

Higher is better

12-cores per node
• Intel MPI and Open MPI are faster at 16 nodes

NEMO Benchmark
(InfiniBand QDR)

Jobs/hour

Number of Nodes

1 2 4 8 16

Platform MPI Open MPI Intel MPI

Higher is better 12-cores per node
NEMO Benchmark Results – Interconnects

- InfiniBand enables highest performance and linear scalability for NEMO
 - 420% faster than 10GigE and 580% faster than GigE at 16 nodes
• **MPI point-to-point communication overhead** is dominated
 – Point-to-point: MPI_Isend/recv
 – Collectives: MPI_Allreduce overhead increases faster after 8 nodes
Most messages are small messages: <12KB
• InfiniBand QDR has least communication overhead
 – 13% of total MPI time over GigE
 – 17% of total MPI time over 10GigE
NEMO Benchmark Summary

- **NEMO performance benchmark demonstrates**
 - InfiniBand QDR delivers higher application performance and linear scalability
 - 420% higher performance than 10GigE and 580% higher than GigE
 - Intel MPI tuning can boost application performance by 13%
 - Application has intensive file I/O operations
 - Lustre over InfiniBand eliminates NFS bottleneck and enables application performance

- **NEMO MPI profiling**
 - Message send/recv creates big communication overhead
 - Most are small message used by NEMO
 - Collectives overhead increases as cluster size scales up
Thank You
HPC Advisory Council