Note

- The following research was performed under the HPC Advisory Council activities
 - Participating vendors: Huawei, Mellanox
 - Compute resource - HPC Advisory Council Cluster Center

- The following was done to provide best practices
 - OpenFOAM performance overview
 - Understanding OpenFOAM communication patterns
 - Ways to increase OpenFOAM productivity
 - MPI libraries comparisons

- For more info please refer to
 - http://www.huawei.com
 - http://www.mellanox.com
 - https://www.openfoam.com/
OpenFOAM® (Open Field Operation and Manipulation) CFD

Toolbox in an open source CFD applications that can simulate
- Complex fluid flows involving
- Chemical reactions
- Turbulence
- Heat transfer
- Solid dynamics
- Electromagnetics
- The pricing of financial options

OpenFOAM support can be obtained from OpenCFD Ltd
Objectives

- **The presented research was done to provide best practices**
 - OpenFOAM performance benchmarking
 - MPI Library performance comparison
 - Interconnect performance comparison
 - Compilers comparison
 - Optimization tuning

- **The presented results will demonstrate**
 - The scalability of the compute environment/application
 - Considerations for higher productivity and efficiency
Test Cluster Configuration

- **Huawei FusionServer E9000 with FusionServer CH121 V5 16-node (640-core) “Skylake” cluster**
 - Dual-Socket 20-Core Intel Xeon Gold 6138 @ 2.00 GHz CPUs (27.5MB L3 Cache, Turbo @3.70 GHz)
 - Dual-Socket 18-core Intel Xeon Gold 6140 @ 2.30 GHz CPUs (24.75MB L3 Cache, Turbo @3.70 GHz)
 - Dual-Socket 20-core Intel Xeon Gold 6148 @ 2.40 GHz CPUs (27.5MB L3 Cache, Turbo @3.70 GHz)
 - Memory: 192GB memory, DDR4 2666 MHz RDIMMs per node
 - OS: RHEL 7.3, MLNX_OFED_LINUX-4.1-1.0.2.0 InfiniBand SW stack
- **Mellanox ConnectX-4 and ConnectX-5 EDR 100Gb/s InfiniBand Adapters**
- **Mellanox Switch-IB SB7800 36-port EDR 100Gb/s InfiniBand Switch**
- **Huawei OceanStor 9000 Scale-out NAS storage system**
- **Compilers: Intel Parallel Studio XE 2018**
- **MPI: Intel MPI 2018, Mellanox HPC-X MPI Toolkit v1.9.7**
- **Application: OpenFOAM v1612+, single precision**
- **Benchmarks: MotorBike, 160K elements, 100 steps**
Introducing Huawei FusionServer E9000 – CH121 V5

High-Performance 2-Socket Blade Unlocks Supreme Computing Power

FusionServer

Full-series Intel® Xeon® Scalable Processors, **24** DDR4 DIMMs, AEP memory supported, **1** PCIe slot, **2** SFF/2 NVMe SSDs/4 **M.2 SSDs** high-performance storage, multi-plane network, LOM supported
OpenFOAM Performance – CPU SKUs and Generation

- **OpenFOAM performance gain by larger core counts and better memory throughput**
 - “Gold 6140” demonstrates a 34% of performance gain (29% more cores) vs E5-2680v4
 - “Gold 6148” demonstrates a 34% of performance gain (42% more cores) vs E5-2680v4
 - Base clock are the same on E5-2680 v4 and Gold 6148, while Gold 6140 runs slightly slower
 - Skylake supports 6 memory channels and faster DIMMs which impacts on memory performance

Performance Comparisons

![Performance Comparisons Chart]

Higher is better

Single Node Performance
• **Performance benefits of Skylake CPU grows as cluster scales (on per-node basis)**
 – Performance gain of ~60% by “Skylake” CPUs compared to “Broadwell” CPUs
 • Difference may be mainly due to additional cores, and newer CPU architecture available in Skylake
 – No difference in using “Gold 6140” versus “Gold 6148”, despite slightly higher clock and more cores
 • Gold 6148 has 2 more CPU cores, and slight increase in CPU base clock
 • Possible reason may be memory bandwidth saturation, and turbo clock are same for both CPUs
OpenFOAM Performance – CPU SKUs and Generation

- Performance benefits of Skylake CPU grows as cluster scales (on by-core basis)
 - Performance is even between “Skylake” CPUs and “Broadwell” CPUs at 40 cores
 - Performance gain become much more apparent at scale
- CPU Information:
 - Gold 6148: Dual Socket 20-core Intel Xeon 6148 @ 2.4GHz (Turbo @ 3.7GHz)
 - E5-2680v4: Dual Socket 14-core Intel Xeon E5-2680v4 @2.4GHz (Turbo @ 3.3GHz)

Higher is better

![OpenFOAM Performance Chart]

- 17%
- 12%
- 6%
- 2%
OpenFOAM Performance – Memory Speed

- Memory speed provides some benefits to OpenFOAM performance
 - Skylake platform supports DIMM speed up to 2666MHz DIMMs
 - 2666MHz DIMMs is theoretically ~11% faster than the 2400MHz DIMMs
 - OpenFOAM reports only about ~5% of the improvement on a single node
 - Only part of the benefits in speed is translated into performance gain for OpenFOAM

OpenFOAM Performance (SNC)

Higher is better

40 MPI Processes / Node
OpenFOAM Performance – Sub-NUMA Clustering

- **Enabling SNC provides marginal benefits for OpenFOAM**
 - Sub-NUMA Clustering (SNC) is similar to a cluster-on-die (COD) in Haswell/Broadwell generation
 - CPU cores and memory would be split into 2 separate NUMA domains when SNC is enabled
 - SNC generally should demonstrate some benefits for applications that requires good NUMA locality
 - SNC only demonstrates small marginal gain when SNC is enabled

OpenFOAM Performance (SNC)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Performance Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SNC Disabled</td>
</tr>
<tr>
<td>2</td>
<td>SNC Enabled</td>
</tr>
<tr>
<td>4</td>
<td>SNC Enabled</td>
</tr>
<tr>
<td>8</td>
<td>SNC Enabled</td>
</tr>
</tbody>
</table>

Higher is better

40 MPI Processes / Node
OpenFOAM Performance – Processes Per Node

- **Observed best performance with using less CPU cores per node**
 - Some benefits by using 36 cores per node on a Gold 6138; compared to 40 or 32 PPN
 - Dual-socket “Gold 6138” provide up to 40 per node
 - Potentially due to memory bandwidth saturation for the number of Skylake cores

![OpenFOAM Performance (MotorBike)](image-url)

Gold 6138
OpenFOAM Profiling – MPI/User Time Ratio

- **OpenFOAM simpleFOAM solver uses mainly non-blocking communications**
 - 23% of overall runtime spent on MPI communication at 16 nodes / 640 MPI cores
 - Both Intel MPI and HPC-X spent the same time in overall runtime on MPI communications
 - Overall of MPI time spent in MPI non-blocking communications (MPI_Waitall 47%, MPI_Isend, 47%)
 - Most of the MPI calls made by OpenFOAM are MPI_Waitall
OpenFOAM Summary

- **OpenFOAM performance gain by larger core counts and better memory throughput**
 - “Gold 6140” demonstrates a 34% of performance gain (29% more cores) vs E5-2680v4 (on 1-node)
 - “Gold 6148” demonstrates a 34% of performance gain (42% more cores) vs E5-2680v4 (on 1-node)
 - Performance gain of ~60% by “Skylake” CPUs compared to “Broadwell” CPUs (on multi-node)
 - No difference in using “Gold 6140” versus “Gold 6148”, despite slightly higher clock and more cores

- **Effect on Skylake generation on OpenFOAM performance**
 - Provides substantial performance gain due to the larger core count, support for memory channels
 - Faster 2666MHz DIMM (compares to 2400MHz) translates to increase of 5% in performance

- **Effect on SNC (Sub-NUMA Clustering) on performance**
 - Enabling Sub-NUMA Clustering provides little/marginal benefits

- **Observed best performance is using less cores than available per node**
 - Slight benefits by using 36 CPU cores per node; compared to 40 or 32 PPN
Thank You
HPC Advisory Council