OpenFOAM
Performance Benchmark and Profiling

July 2014
• The following research was performed under the HPC Advisory Council activities
 – Participating vendors: Intel, Dell, Mellanox
 – Compute resource - HPC Advisory Council Cluster Center

• The following was done to provide best practices
 – OpenFOAM performance overview
 – Understanding OpenFOAM communication patterns
 – Ways to increase OpenFOAM productivity
 – MPI libraries comparisons

• For more info please refer to
 – http://www.dell.com
 – http://www.intel.com
 – http://www.mellanox.com
 – http://www.openfoam.org
Objectives

• **The following was done to provide best practices**
 – OpenFOAM performance benchmarking
 – Interconnect performance comparisons
 – MPI performance comparison
 – Understanding OpenFOAM communication patterns

• **The presented results will demonstrate**
 – The scalability of the compute environment to provide nearly linear application scalability
 – The capability of OpenFOAM to achieve scalable productivity
OpenFOAM Applications

• OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox in an open source CFD applications that can simulate
 – Complex fluid flows involving
 • Chemical reactions
 • Turbulence
 • Heat transfer
 – Solid dynamics
 – Electromagnetics
 – The pricing of financial options

• OpenFOAM support can be obtained from OpenCFD Ltd
Test Cluster Configuration

- **Dell™ PowerEdge™ R720xd 32-node (640-core) “Jupiter” cluster**
 - Dual-Socket Eight-Core Intel E5-2680v2 @ 2.80 GHz CPUs (Static max Perf in BIOS)
 - Memory: 64GB memory, DDR3 1600 MHz
 - OS: RHEL 6.2, OFED 2.2-1.0.1 InfiniBand SW stack
 - Hard Drives: 24x 250GB 7.2 RPM SATA 2.5” on RAID 0

- **Intel Cluster Ready certified cluster**

- **Mellanox Connect-IB FDR InfiniBand VPI adapters**

- **Mellanox SwitchX SX6036 InfiniBand switch**

- **MPI: Intel MPI 4 Update 3, Mellanox HPC-X v1.0.0 (based on Open MPI 1.8)**

- **Application: OpenFOAM 2.3.0**

- **Benchmark datasets:**
 - Lid Driven Cavity Flow - 1 Million elements, 2D, icoFoam solver for laminar, isothermal, incompressible flow
About Intel® Cluster Ready

- **Intel® Cluster Ready systems make it practical to use a cluster to increase your simulation and modeling productivity**
 - Simplifies selection, deployment, and operation of a cluster

- **A single architecture platform supported by many OEMs, ISVs, cluster provisioning vendors, and interconnect providers**
 - Focus on your work productivity, spend less management time on the cluster

- **Select Intel Cluster Ready**
 - Where the cluster is delivered ready to run
 - Hardware and software are integrated and configured together
 - Applications are registered, validating execution on the Intel Cluster Ready architecture
 - Includes Intel® Cluster Checker tool, to verify functionality and periodically check cluster health
PowerEdge R720xd
Massive flexibility for data intensive operations

- **Performance and efficiency**
 - Intelligent hardware-driven systems management with extensive power management features
 - Innovative tools including automation for parts replacement and lifecycle manageability
 - Broad choice of networking technologies from GigE to IB
 - Built in redundancy with hot plug and swappable PSU, HDDs and fans

- **Benefits**
 - Designed for performance workloads
 - from big data analytics, distributed storage or distributed computing where local storage is key to classic HPC and large scale hosting environments
 - High performance scale-out compute and low cost dense storage in one package

- **Hardware Capabilities**
 - Flexible compute platform with dense storage capacity
 - 2S/2U server, 6 PCIe slots
 - Large memory footprint (Up to 768GB / 24 DIMMs)
 - High I/O performance and optional storage configurations
 - HDD options: 12 x 3.5” - or - 24 x 2.5 + 2x 2.5 HDDs in rear of server
 - Up to 26 HDDs with 2 hot plug drives in rear of server for boot or scratch
OpenFOAM Performance – Processors

- Intel E5-2680 (Sandy Bridge) cluster outperforms prior generations
 - Performs 93% better than X5670 cluster at 16 nodes
- System components used:
 - Jupiter: 2-socket Intel E5-2680 @ 2.7GHz, 1600MHz DIMMs, FDR IB, 24 disks
 - Janus: 2-socket Intel X5670 @ 2.93GHz, 1333MHz DIMMs, QDR IB, 1 disk

Higher is better

Performance Rating = Jobs/Day

OpenFOAM Performance
(Lid-driven Cavity)
OpenFOAM Performance – MPI

- Intel MPI outperforms Open MPI at larger scale
 - Up to 44% higher performance than Open MPI at 16-node
- CPU binding optimization flag used in all cases shown
 - No other optimization flags are used

OpenFOAM Performance
(Lid-driven Cavity)

Higher is better

Higher is better

Number of Nodes

Performance Rating

Open MPI Intel MPI FDR InfiniBand
OpenFOAM Performance – Interconnects

- **FDR InfiniBand provides better scalability performance than Ethernet**
 - 544% better performance than 10GbE at 16 nodes / 256 processes
 - 179% better performance than 1GbE at 16 nodes / 256 processes
 - 1GbE does not scale at all

![OpenFOAM Performance](chart)

Higher is better
OpenFOAM Performance – Interconnects

- **FDR InfiniBand delivers better application performance**
 - Up to 27% better performance than InfiniBand QDR
 - Using Mellanox ConnectX-3 PCIe Gen3 in FDR mode and QDR mode

![OpenFOAM Performance chart](chart.png)

Higher is better

- **Intel MPI**
- **16 Processes/Node**
About Mellanox FCA

- **Mellanox Fabric Collectives Accelerator (FCA)**
 - Utilized hardware accelerations on the adapter (CORE-Direct)
 - Accelerating MPI collectives operations by offloading them to the network
 - The world first complete solution for MPI collectives offloads

- **FCA 2.2 supports accelerations/offloading for**
 - MPI_Barrier
 - MPI_Broadcast
 - MPI_Allreduce and MPI_Reduce
 - MPI_Allgather and MPI_Allgatherv
Software Layers Overview

Running OpenFOAM without FCA accelerations

OpenFOAM

Running OpenFOAM with FCA accelerations

MPI

FCA

CORE-Direct API

InfiniBand HCA (with CORE-Direct support)

Switch
OpenFOAM Performance – FCA

- **FCA enables nearly 51% performance gain at 16 nodes / 256 cores**
 - Bigger advantage expected at higher node count / core count
 - Normally FCA is enabled for >64 cores; FCA is enabled for all processes shown below

- **Flags used:**
 - To enable FCA at runtime: `--mca coll_fca_enable 1 --mca coll_fca_np 0`
 - Both cases at runtime: `--bind-to-core -mca btl openib,sm,self`

OpenFOAM Performance
(Lid-driven Cavity)

Higher is better
OpenFOAM Profiling – Number of MPI Calls

- **OpenFOAM utilizes a wide range of MPI APIs**
 - 11 MPI APIs used in total
 - 4 MPI APIs account for almost all of MPI calls

- **MPI_Waitall, MPI_Irecv and MPI_Isend are almost used exclusively**
 - MPI_Irecv, MPI_Isend (26% each), MPI_Alltoallv (19%) at 16 nodes
• MPI communication time accounts for 50%
 – With 16 nodes / 256 cores
 – The Lid-driven cavity flow is a highly communicative workload
OpenFOAM Profiling – % MPI Time

- MPI profiling clearly shows large time usage in MPI collective operations
 - MPI_Allreduce accounts for 79% to 85% of all MPI time
- Tuning MPI libraries for MPI collective offloading related to collective operations
 - Will greatly influence the system performance
• As the cluster grows, less data is transferred between MPI processes
 – Decrease from 523MB max (8 nodes) at to 263MB max per rank (16 nodes)
 – Majority of communications are between neighboring ranks
 – Non-blocking (point to point) data transfers are shown in the graph
 – Collective data communications are small compared to non-blocking communications
• **OpenFOAM performance**
 – Intel Xeon E5-2600 series and FDR InfiniBand enable OpenFOAM to scale with 16 nodes
 – The E5-2680 cluster outperforms X5670 cluster by 93% at 16 nodes
 – Intel MPI scales better than Open MPI at large node counts (16 nodes) by 44%

• **FDR InfiniBand delivers the best application performance for OpenFOAM**
 – Up to 27% higher performance than InfiniBand QDR at 16 nodes
 – Up to 179% higher performance than 10GbE at 16 nodes
 – Up to 544% higher performance than 1GbE at 16 nodes

• **OpenFOAM MPI profiling**
 – Time used by MPI accounts for 50% of total runtime at 16 nodes / 256 processes
 – MPI_Allreduce accounts for 79% to 85% of all MPI time
 – Shows MPI_Allreduce is the main MPI collective routines that impacts OpenFOAM performance

• **FCA package has proven to accelerate application**
 – Nearly 51% faster runtime at 16 nodes / 256 cores for OpenFOAM with Open MPI
 – Higher performance boost expected at larger scale
Thank You

HPC Advisory Council