Virtual Performance Solution (VPS) 2013.01
Performance Benchmark and Profiling
May 2014
The following research was performed under the HPC Advisory Council activities
- Participating vendors: ESI Group, Intel, Dell, Mellanox
- Compute resource - HPC Advisory Council Cluster Center

The following was done to provide best practices
- VPS performance overview
- Understanding VPS communication patterns
- Ways to increase VPS productivity
- MPI libraries comparisons

For more info please refer to
- http://virtualperformance.esi-group.com/
- http://www.dell.com
- http://www.intel.com
- http://www.mellanox.com
• **Virtual Performance Solution (VPS)**
 - Originated from **PAM-CRASH**
 - Software package from ESI Group
 - Used for crash simulation
 - Design of occupant safety systems
 - Primarily used in the automotive industry
 - Simulate the performance of a proposed vehicle design
 - Evaluate the potential for injury to occupants in multiple crash scenarios
Objectives

• The presented research was done to provide best practices
 – VPS performance benchmarking
 – Interconnect performance comparisons
 – Ways to increase VPS productivity
 – Power-efficient simulations

• The presented results will demonstrate
 – The scalability of the compute environment
 – The scalability of the compute environment/application
 – Considerations for higher productivity and efficiency
Test Cluster Configuration

• Dell™ PowerEdge™ R720/R720xd 32-node (640-core) “Jupiter” cluster
 – Dual-Socket Hexa-Core Intel E5-2680 V2 @ 2.80 GHz CPUs
 – Memory: 64GB memory, DDR3 1600 MHz, Dual Rank
 – OS: RHEL 6.2, OFED 2.1-1.0.6 InfiniBand SW stack
 – Hard Drives: R720xd: 24x 250GB 7.2 RPM SATA 2.5” on RAID 0. R720: 16x250GB on RAID 0

• Intel Cluster Ready certified cluster

• Mellanox Connect-IB FDR InfiniBand and ConnectX-3 Ethernet adapters

• Mellanox SwitchX 6036 VPI InfiniBand and Ethernet switches

• MPI executables provided: Platform MPI 8.3, Open MPI 1.4

• MPI used: Platform MPI 9.1, Open MPI 1.8 based on Mellanox HPC-X 1.0.0rc4

• Application: VPS 2013.01

• Benchmarks:
 – Crash_NEON_FINE_CAR2CAR – Chrysler Neon CAR2CAR 56km/h, 120ms, Single Precision
 (unless otherwise stated)
About Intel® Cluster Ready

- Intel® Cluster Ready systems make it practical to use a cluster to increase your simulation and modeling productivity
 - Simplifies selection, deployment, and operation of a cluster

- A single architecture platform supported by many OEMs, ISVs, cluster provisioning vendors, and interconnect providers
 - Focus on your work productivity, spend less management time on the cluster

- Select Intel Cluster Ready
 - Where the cluster is delivered ready to run
 - Hardware and software are integrated and configured together
 - Applications are registered, validating execution on the Intel Cluster Ready architecture
 - Includes Intel® Cluster Checker tool, to verify functionality and periodically check cluster health
PowerEdge R720/R720xd
Massive flexibility for data intensive operations

• **Performance and efficiency**
 – Intelligent hardware-driven systems management with extensive power management features
 – Innovative tools including automation for parts replacement and lifecycle manageability
 – Broad choice of networking technologies from GigE to IB
 – Built in redundancy with hot plug and swappable PSU, HDDs and fans

• **Benefits**
 – Designed for performance workloads
 • from big data analytics, distributed storage or distributed computing where local storage is key to classic HPC and large scale hosting environments
 • High performance scale-out compute and low cost dense storage in one package

• **Hardware Capabilities**
 – Flexible compute platform with dense storage capacity
 • 2S/2U server, 6 PCIe slots
 – Large memory footprint (Up to 768GB / 24 DIMMs)
 – High I/O performance and optional storage configurations
 • HDD options: 12 x 3.5” - or - 24 x 2.5 + 2x 2.5 HDDs in rear of server
 • Up to 26 HDDs with 2 hot plug drives in rear of server for boot or scratch
VPS Performance – Network (MPI)

- **FDR InfiniBand delivers the best network scalability performance**
 - Provides up to 701% higher performance than 1GbE at 32 nodes
 - Provides up to 98% higher performance than 10GbE at 32 nodes
 - FDR IB scales linearly while 10/40GbE has scalability limitation beyond 16 nodes
 - Result for 1GbE at 16 nodes was excluded due to error termination at runtime

VPS 2013.01 Performance
(NEON_FINE_CAR2CAR, No OpenMP)

![Graph showing performance ratings for 1GbE, 10GbE, and FDR InfiniBand for different numbers of nodes.](image)

Higher is better
VPS Performance – Network (Hybrid)

- Similar scalability seen with 2 OpenMP thread spawn per process
 - FDR IB provides up to 564% higher performance vs 1GbE, and 129% vs 10GbE
 - FDR IB scales linearly while 10GbE has scalability limitation beyond 16 nodes
 - Scalability of 1GbE drops after 4 nodes

VPS 2013.01 Performance
(NEON_FINE_CAR2CAR, 2 OpenMP)

Higher is better
VPS Performance – MPI-OpenMP Hybrid

- **Hybrid mode allows higher performance at scale**
 - 2 OpenMP threads per process provides 8% higher at 32 nodes
 - Slightly better performance if OpenMP is not used on smaller node counts
 - Hybrid mode expect to provide higher performance at larger scale

![VPS 2013.01 Performance](chart)

Higher is better
Enabling FCA provides additional speedup for Open MPI
- MPI collective accelerations provide ~9% speedup at 32 nodes

Runtime flags used:
- Enabling FCA: `-mca coll_fca_enable 1 -mca coll_fca_np 0`
- Other tuned flags used for FCA, to mitigate node imbalances effect in MPI_Allreduce:
 - `-x fca_mpi_slow_sleep=0 -x fca_mpi_slow_num_polls=100000000`

VPS 2013.01 Performance
(NEON_FINE_CAR2CAR)

Higher is better
• Tuned Open MPI delivers higher performance for VPS
 – Open MPI with FCA runs 10% faster than Platform MPI
 – Default MPI implementation used in VPS is Platform MPI
 – VPS supports OMPI 1.4 but need more recent version to work for network
 – Modifications (on pamworld) and run script to make Open MPI 1.8 to work

VPS 2013.01 Performance (NEON_FINE_CAR2CAR)

Higher is better
VPS Performance – Turbo Mode

- **Enabling Turbo mode results in higher application performance**
 - Up to 8% of the improvement seen by enabling Turbo mode
 - At a cost of ~11% of higher power utilization per node
 - Boosting base frequency; consequently resulted in higher power consumption
 - Power measurement is gathered from the iDRAC management interface on R720

- **Using kernel tools called “msr-tools” to adjust Turbo Mode dynamically**
 - Allows dynamically turn off/on Turbo mode in the OS level

VPS 2013.01 Performance (NEON_FINE_CAR2CAR)

- Lower is better

VPS 2013.01 Performance (NEON_FINE_CAR2CAR)

- Higher is better
VPS Performance – CPU Frequencies

- **Running at higher CPU clock improves VPS performance**
 - For example, Running CPU at 2000MHz on all nodes saves 23% of system power
 - While performance is improved by 49% when using 2800MHz (Turbo) vs 2000MHz

- **Better Power/Performance efficiency is observed**
 - When clock speed around 2700MHz or 2800MHz with Turbo off

Open MPI

VPS 2013.01 Performance (NEON_FINE_CAR2CAR)

- 2000MHz
- 2700MHz
- 2800MHz
- 2800MHz Turbo On

- Power Usage:
 - 23% reduction
 - 10% performance improvement
 - 10% better efficiency

VPS 2013.01 Performance (NEON_FINE_CAR2CAR)

- 1200MHz
- 2000MHz
- 2700MHz
- 2800MHz
- 2800MHz Turbo On

- Performance Rating:
 - 48% increase
 - 39% increase
 - 11% increase
 - 8% increase

20 MPI proc/node
VPS Performance – Floating Point Precisions

- **Running Double Precision takes long than running at Single Precision**
 - DP takes more time than SP, by 54% on a single node
 - Some models require to run in DP to reach convergence, or crash when using SP
- **The difference in ratio between DP and SP increases as it scales**
 - Since DP provides higher precision in calculation, thus requires more data transferred
 - With data grows faster for DP as it scales, thus explains DP is slower than SP

VPS 2013.01 Performance
(NEON_FINE_CAR2CAR)

![Graph showing performance ratings](attachment:graph.png)

Lower is better
Higher is better
VPS Profiling – IO Profiling

- Both rank 0 node and other nodes perform similar disk operations
 - Disk read occurs mostly at the beginning of a run
 - Recurring disk writes takes place throughout the job run
 - Could potentially benefit by using parallel file system
VPS Profiling – MPI Communication Time

- MPI communication time consumption at 32 nodes
 - MPI Time: MPI_Allreduce(71%), MPI_Wait(13%), MPI_Recv(12%), MPI_Isend(3%)
 - Wall Time: MPI_Allreduce(24%), MPI_Wait(4%), MPI_Recv(4%), MPI_Isend(1%)
 - FDR InfiniBand is used
VPS Profiling – MPI Communication Time

- Identified MPI overheads by profiling communication time
 - VPS uses different MPI communication method extensively
 - collective, point-to-point and non-blocking operations
 - Ethernet spends more in collective operations
 - 10GbE vs FDR IB: Spent longer time in MPI_Allreduce
 - 1GbE vs FDR IB: Spent way longer time in MPI_Allreduce, MPI_BARRIER
VPS Profiling – User/MPI Time Ratio

- **VPS spent more time in computation than communication for FDR IB**
 - Other network spent more time in communication at 32 nodes
 - FDR IB consumes 33% of runtime in comm, vs 10GbE: 71% and 1GbE: 93%
 - FDR InfiniBand provides more time for computation, thus the most efficient network

VPS 2013.01 Profiling
- **NEON_FINE_CAR2CAR, 32-node, 1GbE**
 - % MPI Time

VPS 2013.01 Profiling
- **NEON_FINE_CAR2CAR, 32-node, 10GbE**
 - % Time

VPS 2013.01 Profiling
- **NEON_FINE_CAR2CAR, 32-node, FDR IB**
 - % Time

- MPI time: 93%, 71%, 67%
- User time: 7%, 29%, 33%
VPS Profiling – MPI Time Spent

- The most time consuming MPI for VPS is MPI_Allreduce
 - MPI_Allreduce consumes 60% of all MPI time
 - Majority of MPI_Allreduce takes place at 4B and 224B
VPS Profiling – Message Sizes

- Majority of messages are small messages
 - Messages are concentrated below 64KB
- Number of messages increases with the number of nodes
VPS Profiling – MPI Data Transfer

- **As the cluster grows, same amount of data transfers takes place**
 - From ~15-30GB per rank at 1 node vs 7-30GB at 8 nodes
 - Some node imbalances are seen through the amount of data transfers
VPS Profiling – Aggregated Transfer

- **Aggregated data transfer refers to:**
 - Total amount of data being transferred in the network between all MPI ranks collectively

- **Very large data transfer takes place in VPS**
 - High network throughput is required for delivering the network bandwidth
 - 2TB of data transfer takes place between the MPI processes at 8 nodes

![VPS 2013.01 Profiling](image)

VPS 2013.01 Profiling
(NEON_FINE_CAR2CAR)
Aggregated Data Transferred

- **Data Transferred (GB):**
 - 0
 - 500
 - 1000
 - 1500
 - 2000
 - 2500

- **Number of Nodes:**
 - 1 Node
 - 2 Nodes
 - 4 Nodes
 - 8 Nodes
The point to point data flow shows the communication pattern of VPS:
- VPS mainly communicates mainly its neighbors and close ranks.
- The pattern stays the same as the cluster scales.

4 Nodes – 40 Processes

32 Nodes – 320 Processes
VPS – Summary

- **Performance**
 - FDR InfiniBand delivers the highest network performance for VPS to scale
 - FDR IB provides higher performance against other networks
 - FDR IB delivers ~162% higher compared to 40GbE, ~178% vs 10GbE on a 32 node run
 - MPI-OpenMP Hybrid mode can provide better performance at scale
 - About 8% performance increase at 32 nodes with hybrid
 - Enabling Turbo mode results in higher application performance
 - Up to 8% of the improvement seen by enabling Turbo mode
 - At the expense of ~11% in higher power utilization
 - The default MPI implementation provides similarly as Open MPI 1.8 in HPC-X
 - With FCA enabled, Open MPI runs about 10% faster than Platform MPI at 32 nodes

- **MPI Profiling**
 - Majority of MPI communication time comes from MPI_Allreduce
 - About 71% of the time spent in MPI_Allreduce
 - Ethernet solutions consumes more time in communications
 - Spent 71%-93% of overall time in network due to congestion in Ethernet, while IB spent ~33%
Thank You
HPC Advisory Council