Weather Research and Forecasting (WRF)
Performance Benchmark and Profiling
July 2012
The following research was performed under the HPC Advisory Council activities

- Participating vendors: Intel, Dell, Mellanox
- Compute resource - HPC Advisory Council Cluster Center

The following was done to provide best practices

- WRF performance overview
- Understanding WRF communication patterns
- Ways to increase WRF productivity
- MPI libraries comparisons

For more info please refer to

- http://www.dell.com
- http://www.intel.com
- http://www.mellanox.com
- http://wrf-model.org
The Weather Research and Forecasting (WRF) Model

- Numerical weather prediction system
- Designed for operational forecasting and atmospheric research

WRF developed by

- National Center for Atmospheric Research (NCAR),
- The National Centers for Environmental Prediction (NCEP)
- Forecast Systems Laboratory (FSL)
- Air Force Weather Agency (AFWA)
- Naval Research Laboratory
- Oklahoma University
- Federal Aviation Administration (FAA)
WRF Usage

- The WRF model includes
 - Real-data and idealized simulations
 - Various lateral boundary condition options
 - Full physics options
 - Non-hydrostatic and hydrostatic
 - One-way, two-way nesting and moving nest
 - Applications ranging from meters to thousands of kilometers
Objectives

• The presented research was done to provide best practices
 – WRF performance benchmarking
 • MPI Library performance comparison
 • Interconnect performance comparison
 • CPUs comparison
 • Compilers comparison

• The presented results will demonstrate
 – The scalability of the compute environment/application
 – Considerations for higher productivity and efficiency
Test Cluster Configuration

- **Dell™ PowerEdge™ R720xd 16-node (256-core) “Jupiter” cluster**
 - Dual-Socket Eight-Core Intel E5-2680 @ 2.70 GHz CPUs (Static max Perf in BIOS)
 - Memory: 64GB memory, DDR3 1600 MHz
 - OS: RHEL 6.2, OFED 1.5.3 InfiniBand SW stack
 - Hard Drives: 24x 250GB 7.2 RPM SATA 2.5” on RAID 0

- **Intel Cluster Ready certified cluster**

- **Mellanox ConnectX-3 FDR InfiniBand VPI adapters**

- **Mellanox SwitchX SX6036 InfiniBand switch**

- **Compilers:** GNU 4.6.3, Intel Composer XE 2011. NetCDF 4.1.3

- **MPI:** Intel MPI 4 U3, Open MPI 1.6 (KNEM 0.9.8), Platform MPI 8.2

- **Application and benchmarks:** WRF 3.4, CONUS-12km - 48-hour, 12km resolution case over the Continental US from October 24, 2001
About Intel® Cluster Ready

- **Intel® Cluster Ready systems make it practical to use a cluster to increase your simulation and modeling productivity**
 - Simplifies selection, deployment, and operation of a cluster

- **A single architecture platform supported by many OEMs, ISVs, cluster provisioning vendors, and interconnect providers**
 - Focus on your work productivity, spend less management time on the cluster

- **Select Intel Cluster Ready**
 - Where the cluster is delivered ready to run
 - Hardware and software are integrated and configured together
 - Applications are registered, validating execution on the Intel Cluster Ready architecture
 - Includes Intel® Cluster Checker tool, to verify functionality and periodically check cluster health
PowerEdge R720xd
Massive flexibility for data intensive operations

• **Performance and efficiency**
 – Intelligent hardware-driven systems management with extensive power management features
 – Innovative tools including automation for parts replacement and lifecycle manageability
 – Broad choice of networking technologies from GigE to IB
 – Built in redundancy with hot plug and swappable PSU, HDDs and fans

• **Benefits**
 – Designed for performance workloads
 • from big data analytics, distributed storage or distributed computing where local storage is key to classic HPC and large scale hosting environments
 • High performance scale-out compute and low cost dense storage in one package

• **Hardware Capabilities**
 – Flexible compute platform with dense storage capacity
 • 2S/2U server, 6 PCIe slots
 – Large memory footprint (Up to 768GB / 24 DIMMs)
 – High I/O performance and optional storage configurations
 • HDD options: 12 x 3.5” - or - 24 x 2.5 + 2x 2.5 HDDs in rear of server
 • Up to 26 HDDs with 2 hot plug drives in rear of server for boot or scratch
• **Intel E5-2600 Series (Sandy Bridge) outperforms prior generations**
 – Up to 98% higher performance than Intel Xeon X5670 (Westmere) at 14-node

• **System components used:**
 – Jupiter: 2-socket Intel E5-2680 @ 2.7GHz, 1600MHz DIMMs, FDR IB, 24 disks
 – Janus: 2-socket Intel x5670 @ 2.93GHz, 1333MHz DIMMs, QDR IB, 1 disk

WRF Benchmark
(conus12km)

Higher is better
InfiniBand FDR
WRF Performance – Compilers

- Using Intel Composer XE 2011 compiler shows the best performance
 - Up to 42% better performance than compiling WRF using GNU 4.6.3 compilers
- Default compile options are being tested
 - The standard compiler options in the “configure.wrf” file

WRF Benchmark
(conus12km)

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Simulation/Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GNU 4.6.3</td>
</tr>
<tr>
<td>2</td>
<td>Intel Composer XE 2011</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Higher is better

42%
WRF Performance – Interconnects

- **InfiniBand FDR enables the highest cluster productivity**
 - Increasing the performance by up to 17% over InfiniBand QDR at 16-node

WRF Benchmark
(conus12km)

Higher is better
- All MPI performs similarly in performance
 - All MPI implementations tested (Intel, Platform, Open MPI) show good performance
 - Reflects each MPI implementation handles efficiently for the MPI transfers

![WRF Benchmark](conus12km)

Simulation/Hour

Number of Nodes

1 2 4 8 16

Platform MPI 8.2 Open MPI 1.5.5 Intel MPI 4 U3

Higher is better

GNU Compilers
WRF Profiling – Point-to-point dataflow

- Communication seems to be limited to MPI ranks that is closer to self
 - Heavy communications between self and 4 ranks above and below
- Communication pattern does not change as the cluster scales
 - However, the amount of data being transferred is reduced as the node scales
WRF Profiling – Time Spent by MPI Calls

- **Majority of the MPI time is spent on MPI_Bcast**
 - For waiting for pending non-blocking sends and receives to complete
- **Some differences can be seen in MPI time consumption by each MPI rank**
 - MPI_Wait time differences
 - Rank 0 does not participate on MPI_Bcast
WRF Profiling – MPI Message Sizes

- Majority of data transfer messages are medium sizes, except for:
 - MPI_Bcast has a large concentration in small sizes (e.g. 4 byte size)
 - MPI_Wait: Large concentration of 1 to less than 256 bytes
WRF – Summary

- **Performance**
 - Intel Xeon E5-2680 on the “Jupiter” cluster and InfiniBand FDR enable WRF to scale
 - “Jupiter”, the E5-2680 cluster performs up to 98% over “Janus” the X5670 cluster

- **Network**
 - InfiniBand FDR allows WRF to run at the highest network throughput at 56Gbps
 - InfiniBand FDR provides up to 19% of performance gain over QDR rate for WRF
 - All MPI implementations tested (Intel, Platform, Open MPI) show good performance

- **Compilers**
 - Intel Composer compiler provides gains of 42% at 16-node over GNU 4.6 compilers

- **Profiling**
 - Heavy usage in midrange message sizes for MPI communications
 - Majority of MPI time is spent on MPI_Wait for pending non-blocking sends and receives
Thank You

HPC Advisory Council